Study of the influence of electrical impulses on arterial blood microcirculation using laser Doppler flowmetry

封面

如何引用文章

全文:

详细

Background and Objectives: The influence of low-voltage electrical current impulses on arterial blood microcirculation was investigated using the method of laser Doppler flowmetry. Materials and Methods: The method involves measuring the blood microcirculation index by quantifying the Doppler frequency shift arising when the microcirculatory bed is probed with laser radiation, followed by the registration of radiation reflected from both moving and stationary tissue components. Results: It has been demonstrated that exposure to electrical current impulses leads to an average 4-fold increase in the myogenic component of the spectrum relative to the baseline sample. This increase is associated with changes in the tone of the vascular wall in blood arterioles. The predominance of neurogenic components of the spectrum after cessation of exposure to electrical impulses has also been revealed. Conclusion: Utilizing the laser Doppler flowmetry method based on the amplitudes of spectral harmonics of vascular oscillation rhythms allows to determine quantitatively the changes in blood flow regulation during exposure to current impulses.

作者简介

Veronika Prokhorova

Saratov State University

ORCID iD: 0009-0001-1632-649X
410012, Russia, Saratov, Astrakhanskaya street, 83

Oksana Kutikova

Saratov State University

ORCID iD: 0000-0001-5976-2972
410012, Russia, Saratov, Astrakhanskaya street, 83

Alexey Palaguta

Saratov State University

ORCID iD: 0009-0004-8120-1230
410012, Russia, Saratov, Astrakhanskaya street, 83

Anatoliy Skripal

Saratov State University

ORCID iD: 0000-0002-9080-0057
SPIN 代码: 3794-5749
410012, Russia, Saratov, Astrakhanskaya street, 83

Dmitry Ermishin

Clover LLC

ORCID iD: 0009-0005-7223-9234
66A Atkarskaya St., Saratov 410012, Russia

Andrey Rytik

Saratov State University

ORCID iD: 0000-0003-2911-4055
SPIN 代码: 2759-2510
Scopus 作者 ID: 8568067400
Researcher ID: D-6105-2013
410012, Russia, Saratov, Astrakhanskaya street, 83

参考

  1. Сердечно-сосудистые заболевания. URL: https://www.who.int/ru/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (дата обращения: 12.02.2025)
  2. Глущенко В. А., Ирклиенко Е. К. Сердечно-сосудистая заболеваемость – одна из важнейших проблем здравоохранения // Медицина и организация здравоохранения. 2019. Т. 4, № 1. С. 56–63. EDN: KNGYDV
  3. Косолапов В. П., Ярмонова М. В. Анализ высокой сердечно-сосудистой заболеваемости и смертности взрослого населения как медико-социальной проблемы и поиск путей ее решения // Уральский медицинский журнал. 2021. Т. 20, № 1. С. 58–64 https://doi.org/10.52420/2071-5943-2021-20-1-58-64
  4. Currie J., Ramsbottom R., Ludlow H., Nevill A., Gilder M. Cardio-respiratory fitness, habitual physical activity and serum brain derived neurotrophic factor (BDNF) in men and women // Neurosci. Lett. 2009. Vol. 451. P. 152–155. https://doi.org/10.1016/j.neulet.2008.12.043
  5. Dobsák P., Nováková M., Siegelová J., Fiser B., Vítovec J., Nagasaka N., Kohzuki M., Yambe T., Nitta Shin-ichi, Eicher J.-Ch., Wolf J.-E., Imachi K. Low-frequency electrical stimulation increases muscle strength and improves blood supply in patients with chronic heart failure // Circ. J. 2006. Vol. 70, iss. 1. P. 75–82. https://doi.org/10.1253/circj/70.75
  6. Hamada T., Hayashi T., Kimura T., Nakao K., Moritani T. Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake // J. Appl. Physiol. 2004. Vol. 96, iss. 3, P. 911–916. https://doi.org/10.1152/japplphysiol.00664.2003
  7. Hamada T., Sasaki H., Hayashi T., Moritani T., Nakao K. Enhancement of whole body glucose uptake during and after human skeletal muscle low-frequency electrical stimulation // J. Appl. Physiol. 2003. Vol. 94, iss. 6. P. 2107–2112. https:// doi. org/10.1152/japplphysiol.00486.2002
  8. Hasegawa S., Kobayashi M., Arai R., Tamaki A., Nakamura T., Moritani T. Effect of early implementation of electrical muscle stimulation to prevent muscle atrophy and weakness in patients after anterior cruciate ligament reconstruction // J. Electromyogr. Kinesiol. 2011. Vol. 21, iss. 4. P. 622–630. https://doi.org/10.1016/j.jelekin.2011.01.005
  9. Hoshiai M., Ochiai K., Tamura Y. Effects of whole body neuromuscular electrical stimulation device on hemodynamics, arrhythmia, and sublingual microcirculation // Heart and Vessels. 2021. Vol. 36. P. 844–852. https://doi.org/10.1007/s00380-020-01755-1
  10. Ando S., Takagi Y., Watanabe H., Mochizuki K., Sudo M., Fujibayashi M., Tsurugano Sh., Sato K. Effects of electrical muscle stimulation on cerebral blood flow // BMC Neurosci. 2021. Vol. 22. Art. 67. https://doi.org/10.1186/s12868-021-00670-z
  11. Hardy E. J., Hatt J., Doleman B., Smart T. F., Piasecki M., Lund J. N., Phillips B. E. Post-operative electrical muscle stimulation attenuates loss of muscle mass and function following major abdominal surgery in older adults: a split body randomised control trial // Age and Ageing. 2022. Vol. 51, iss. 10. Art. afac234. https://doi.org/10.1093/ageing/afac234
  12. Mukherjee S., Fok J. R., van Mechelen W. Electrical stimulation and muscle strength gains in yealthy adults: A systematic review // Journal of Strength and Conditioning Research. 2023. Vol. 37, № 4. P. 938–950. https://doi.org/10.1519/JSC.0000000000004359
  13. Filipovic A., Kleinöder H., Dörmann U., Mester J. Electromyostimulation – A systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters // Journal of Strength and Conditioning Research. 2011. Vol. 25, № 11. P. 3218–3238. https://doi.org/10.1519/JSC.0b013e318212e3ce
  14. Wang J.-S., Chen S.-Y., Lan C., Wong M.-K., Lai J.-S. Neuromuscular electric stimulation enhances endothelial vascular control and hemodynamic function in paretic upper extremities of patients with stroke // Archives of Physical Medicine and Rehabilitation. 2004. Vol. 85, iss. 7. P. 1112–1116. https://doi.org/10.1016/j.apmr.2003.11.027
  15. Corley G. J., Breen P. P., Bîrlea S. I., Serrador J. M., Grace P. A., Ólaighin G. Hemodynamic effects of habituation to a week-long program of neuromuscular electrical stimulation // Med. Eng. Phys. 2012. Vol. 34, iss. 4. P. 459–465. https://doi.org/10.1016/j.medengphy.2011.08.005
  16. Luck J. C., Kunselman R., Cheryl A. D. Blaha Ch. A., 1, Sinoway L. I., Cui J. Multiple laser Doppler flowmetry probes increase the reproducibility of skin blood flow measurements // Frontiers in Physiology. Section: Integrative Physiology. 2022. Vol. 13. Art. 876633. https://doi.org/10.3389/fphys.2022.876633
  17. Fredriksson I., Fors C., Johansson J. Laser Doppler Flowmetry – A Theoretical Framework. Linköping : Linköping University, 2012. 22 p. URL: https://www.researchgate.net/publication/238678169_Laser_Doppler_Flowmetry_-_A_Theoretical_Framework (дата обращения: 06.07.2025).
  18. Крупаткин А. И., Сидоров В. В. Функциональная диагностика состояния микроциркуляторно-тканевых систем: колебания, информация, нелинейность. Руководство для врачей. М. : Книжный дом «ЛИБРОКОМ», 2013. 496 с.
  19. Stefanovska A., Bračič M., Kvernmo H. D. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique // IEEE Transactions on Biomedical Engineering. 1999. Vol. 46, № 10. P. 1230–1239. https://doi.org/10.1109/10.790500
  20. Куликов Д. А., Глазков А. А., Ковалева Ю. А., Балашова Н. В., Куликов А. В. Перспективы использования лазерной допплеровской флоуметрии в оценке кожной микроциркуляции крови при сахарном диабете // Сахарный диабет. 2017. Т. 20, № 4. С. 279–285. https://doi.org/10.14341/DM8014
  21. Скрипаль Ан. В., Аль-Бадри Фаркад, Машков К. В., Усанов А. Д., Аверьянов А. П. Лазерная флоуметрия микроциркуляции крови пальца руки в зависимости от внешней температуры и положения конечности // Регионарное кровообращение и микроциркуляция. 2023. Т. 22, № 4. С. 35–41. https://doi.org/10.24884/1682-6655-2023-22-4-35-41
  22. Сидоров В. В., Рыбаков Ю. Л., Гукасов В. М., Евтушенко Г. С. Система локальных анализаторов для неинвазивной диагностики общего состояния компартментов микроциркуляторно-тканевой системы кожи человека // Медицинская техника. 2021. № 6 (330). С. 4–6. EDN: PENVNR
  23. Козлов В. И., Азизов Г. А., Гурова О. А., Литвин Ф. Б. Лазерная допплеровская флоуметрия в оценке состояния и расстройств микроциркуляции крови. М. : Российский университет дружбы народов, 2012. 32 с. URL: http://angiologia.ru/specialist/cathedra/recommendations/2012/001.pdf (дата обращения: 07.07.2025).
  24. Патент SU 2731802 C1 (РФ). МПК A61N 1/32 (2006/01). Способ электростимуляции мочеточника : заявл. 2019.11.15 : опубл. 2020.09.08 / Рытик А. П., Вербицкий С. М., Кутикова О. Ю. ; патентообладатель : Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского. URL: https://yandex.ru/patents/doc/RU2731802C1_20200908 (дата обращения: 07.07.2025).
  25. Просова Е. Е., Рытик А. П., Горемыкин В. И., Усанов Д. А., Григорьева М. М. Устройство для коррекции нарушений уродинамики верхних мочевых путей у детей с хроническим пиелонефритом // Медицинская техника. 2014. № 4 (286). С. 1–4. EDN: SYMXWP

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».