Применение методов машинного обучения и статистических методов для выявления стадии анестезии по данным ЭЭГ

Обложка

Цитировать

Полный текст

Аннотация

Объект исследования, цель: Целью исследования является установление возможности неинвазивного определения степени анестезии, которой подвергается лабораторное животное. Для достижения этой цели предлагается использование таких методов анализа сигналов электроэнцефалограммы (ЭЭГ), как быстрое преобразование Фурье, метод машинного обучения K-Means и расчёт статистических характеристик. Модель и методы: Данные ЭЭГ были получены в результате эксперимента, в котором две группы лабораторных крыс получали два различных вида анестетика. Данные ЭЭГ были нормированы, после чего при помощи метода БПФ были вычислены спектры мощности сигналов. Далее для классификации данных и определения стадии анестезии применялся метод машинного обучения K-Means. Также были рассчитаны статистические характеристики для выявления характерных особенностей сигналов на каждой стадии анестезии. Результаты: Показано, что предложенные методы анализа данных позволяют различить нормальное состояние, анестезирование и летальный исход при повышении дозировки анестезии у лабораторных животных.

Об авторах

Татьяна Романовна Богатенко

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0002-4007-7649
Scopus Author ID: 57202979250
ResearcherId: ABA-2501-2021
410012, Россия, г. Саратов, ул. Астраханская, 83

Константин Сергеевич Сергеев

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0002-5605-5700
410012, Россия, г. Саратов, ул. Астраханская, 83

Галина Ивановна Стрелкова

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0002-8667-2742
410012, Россия, г. Саратов, ул. Астраханская, 83

Список литературы

  1. Keech B. M., Lazerta R. Anaesthesia secrets. 6th ed. Elsevier, 2020. ISBN: 9780323640152
  2. Weller R. O., Galea I., Carare R. O., Minagar A. Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology, 2010, vol. 17, pp. 295–306. https://doi.org/10.1016/j.pathophys.2009.10.007
  3. Ahn J. H., Cho H., Kim J.-H., Kim S. H., Ham J.-S., Park I., Suh S. H., Hong S. P., Song J.-H., Hong Y.-K., Jeong Y., Park S.-H., Koh G. Y. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature, 2019, vol. 572, pp. 62–66. https://doi.org/10.1038/s41586-019-1419-5
  4. Chen J., Wang L., Xu H., Xing L., Zhuang Z., Zheng Y., Li X., Wang C., Chen S., Guo Z., Liang Q., Wang Y. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nat. Commun., 2020, vol. 11, article no. 3159. https://doi.org/10.1038/s41467-020-16851-z
  5. Semyachkina-Glushkovskaya O., Penzel T., Blokhina I., Khorovodov A., Fedosov I., Yu T., Karandin G., Evsukova A., Elovenko D., Adushkina V., Shirokov A., Dubrovskii A., Terskov A., Navolokin N., Tzoy M., Ageev V., Agranovich I., Telnova V., Tsven A., Kurths J. Night Photostimulation of Clearance of Beta-Amyloid from Mouse Brain: New Strategies in Preventing Alzheimer’s Disease. Cells, 2021, vol. 10, iss. 12, article no. 3289. https://doi.org/10.3390/cells10123289
  6. Musizza B., Ribaric S. Monitoring the Depth of Anaesthesia. Sensors, 2010, vol. 10, iss. 12, pp. 10896–10935. https://doi.org/10.3390/s101210896
  7. Buhre W., Rossaint R. Perioperative management and monitoring in anaesthesia. Lancet, 2003, vol. 362, iss. 9398, pp. 1893–1846. https://doi.org/10.1016/S0140-6736(03)14905-7
  8. Malik P., Pathania M., Rathaur V. K. Overview of artificial intelligence in medicine. J. Family. Med. Prim. Care, 2019, vol. 8, iss. 7, pp. 2328–2331. https://doi.org/10.4103/jfmpc.jfmpc_440_19
  9. Semyachkina-Glushkovskaya O. V., Karavaev A. S., Prokhorov M. D., Runnova A. E., Borovkova E. I., Ishbulatov Yu. M., Hramkov A. N., Kulminskiy D. D., Semenova N. I., Sergeev K. S., Slepnev A. V., Sitnikova E. Yu., Zhuravlev M. O., Fedosov I. V., Shirokov A. A., Blokhina I. A., Dubrovski A. I., Terskov A. V., Khorovodov A. P., Ageev V. B., Elovenko D. A., Evsukova A. S., Adushkina V. V., Telnova V. V., Postnov D. E., Penzel T. U., Kurths J. G. EEG biomarkers of activation of the lymphatic drainage system of the brain during sleep and opening of the blood-brain barrier. Computational and Structural Biotechnology Journal, 2023, vol. 21, pp. 758–768. https://doi.org/10.1016/j.csbj.2022.12.019
  10. Sergeev K., Runnova A., Zhuravlev M., Sitnikova E., Rutskova E., Smirnov K., Slepnev A., Semenova N. Simple method for detecting sleep episodes in rats ECoG using machine learning. Chaos, Solitons & Fractals, 2023, vol. 173, article no. 113608. https://doi.org/10.1016/j.chaos.2023.113608
  11. Descriptive statistics (GNU Octave (version 9.1.0)). Available at: https://docs.octave.org/v9.1.0/Descriptive-Statistics.html (accessed March 17, 2024).
  12. GNU Octave: libinterp/corefcn/fft.cc File Reference. Available at: https://docs.octave.org/doxygen/3.8/d6/d67/fft_8cc.html (accessed March 17, 2024).
  13. Baumeister J., Barthel T., Geiss K. R., Weiss M. Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutritional Neuroscience, 2008, vol. 11, iss. 3, pp. 103–110. https://doi.org/10.1179/147683008X301478
  14. De Gennaro L., Ferrara M., Bertini M. The spontaneous K-complex during stage 2 sleep: Is it the ’forerunner’ of delta waves? Neuroscience Letters, 2000, vol. 291, iss. 1, pp. 41–43. https://doi.org/10.1016/S0304-3940(00)01366-5
  15. Jensen O., Mazaheri A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Front. Hum. Neurosci., 2010, vol. 4, article no. 186. https://doi.org/10.3389/fnhum.2010.00186
  16. Lomas T., Ivtzan I., Cynthia H. Y. Fu. A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neuroscience & Biobehavioral Reviews, 2015, vol. 57, pp. 401–410. https://doi.org/10.1016/j.neubiorev.2015.09.018
  17. Lega B. C., Jacobs J. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus, 2012, vol. 22, iss. 4, pp. 748–761. https://doi.org/10.1002/hipo.20937
  18. Tesche C. D., Karhu J. Theta oscillations index human hippocampal activation during a working memory task. Proc. Natl. Acad. Sci. USA, 2000, vol. 97, iss. 2, pp. 919–924. https://doi.org/10.1073/pnas.97.2.919
  19. Llinás R., Ribary U. Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl. Acad. Sci., 1993, vol. 90, iss. 5, pp. 2078–2081. https://doi.org/10.1073/pnas.90.5.2078
  20. Baldauf D., Desimone R. Neural Mechanisms of Object-Based Attention. Science, 2014, vol. 344, iss. 6182, pp. 424–427. https://doi.org/10.1126/science.1247003
  21. Borjigin J., Lee U. C., Liu T., Pal D., Huff S., Klarr D., Sloboda J., Hernandez J., Wang M. M., Mashourc G. A. Surge of neurophysiological coherence and connectivity in the dying brain. Proc Natl Acad Sci., 2013, vol. 110, iss. 35, pp. 14432–14437. https://doi.org/10.1073/pnas.1308285110
  22. Li D., Mabrouk O. S., Liu T., Tian F., Xu G., Rengifo S., Choi S. J., Mathur A., Crooks C. P., Kennedy R. T., Wang M. M., Ghanbari H., Borjigin J. Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest. Proc Natl Acad Sci., 2015, vol. 112, iss. 16, pp. 2073–2082. https://doi.org/10.1073/pnas.1423936112

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».