The new algorithm of quasi-optimal reorientation of a spacecraft

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The classical problem of optimal control of the attitude maneuver of a spacecraft as a rigid body of arbitrary dynamic configuration under arbitrary boundary conditions for the angular position and angular velocity of a spacecraft without restriction on the control vector function and with a fixed transition time is considered. As a criterion of optimality, the functional of the energy spent on the rotation of a spacecraft is used. Within the bounds of the Poinsot concept describing arbitrary angular motion of a rigid body in terms of generalized conical motion, a modification of the problem of optimal control of the angular motion of a spacecraft is carried out and its trajectory is given in this class of motions. At the same time, the generality of the original problem is practically not violated, since the known exact solutions to the classical problem of optimal angular motion of a dynamically symmetric spacecraft in cases of plane rotation or regular precession and similar solutions of the modified problem completely coincide; in other cases, in numerical calculations of the classical and modified problems, the discrepancy between the values of the optimization functional is no more than a few percent, including spacecraft rotations at large angles. Therefore, the proposed solution of the modified problem can be used as quasi-optimal with respect to the classical problem. Explicit expressions for the quaternion of the orientation and the vector of angular velocity of a spacecraft are given, a formula for the vector of the control moment of a spacecraft is obtained based on the solution of the inverse problem of the dynamics of a rigid body. The quasi-optimal algorithm for optimal rotation of a spacecraft is given. Numerical examples showing the proximity of solutions to the classical and modified problems of optimal reorientation of a spacecraft are given.

Авторлар туралы

Yakov Sapunkov

Institute of Precision Mechanics and Control, Russian Academy of Sciences (IPTMU RAS); Saratov State University

Russia, 410028, Saratov, Rabochaya, 24

Alexei Molodenkov

Institute of Precision Mechanics and Control, Russian Academy of Sciences (IPTMU RAS)

Russia, 410028, Saratov, Rabochaya, 24

Әдебиет тізімі

  1. Scrivener S. L., Thompson R. C. Survey of time-optimal attitude maneuvers // Journal of Guidance, Control, and Dynamics. 1994. Vol. 17, iss. 2. P. 225–233. https://doi.org/10.2514/3.21187
  2. Бранец В. Н., Шмыглевский И. П. Применение кватернионов в задачах ориентации твердого тела. Москва : Наука, 1973. 320 с.
  3. Junkins J. L., Turner J. D. Optimal Spacecraft Rotational Maneuvers. New York : Elsevier, 1986. 515 p. https://doi.org/10.1016/c2009-0-09714-1
  4. Crassidis J. L., Markley F. L. Fundamentals of Spacecraft Attitude Determination and Control. New York : Springer, 2014. 486 p. https://doi.org/10.1007/978-1-4939-0802-8
  5. Сапунков Я. Г., Молоденков А. В. Численное решение задачи оптимальной переориентации вращающегося космического аппарата // Мехатроника, автоматизация, управление. 2008. № 6. С. 66–70.
  6. Molodenkov A. V., Sapunkov Ya. G. Analytical quasi-optimal solution of the problem of the time-optimal rotation of a spacecraft // Journal of Computer and Systems Sciences International. 2021. Vol. 60, iss. 4. P. 639–653. https://doi.org/10.1134/S1064230721030114
  7. Sapunkov Ya. G., Molodenkov A. V. Analytical solution of the problem on an axisymmetric spacecraft attitude maneuver optimal with respect to a combined functional // Automation and Remote Control. 2021. Vol. 82, iss. 7. P. 1183–1200. https://doi.org/10.1134/S0005117921070043
  8. Акуленко Л. Д., Лилов Л. К. Синтез квазиоптимальной системы переориентации и стабилизации КА // Космические исследования. 1990. Т. 28, вып. 2. С. 186–197.
  9. Boyarko G. A., Romano M., Yakimenko O. A. Time-optimal reorientation of a spacecraft using an inverse dynamics optimization method // Journal of Guidance, Control, and Dynamics. 2011. Vol. 34, iss. 4. P. 1197–1208. https://doi.org/10.2514/1.49449
  10. Понтрягин Л. С., Болтянский В. Г., Гамкрелидзе Р. В., Мищенко Е. Ф. Математическая теория оптимальных процессов. Москва : Наука, 1961. 391 с.
  11. Lastman G. J. A shooting method for solving two-point boundary-value problems arising from non-singular bang-bang optimal control problems // International Journal of Control. 1978. Vol. 27, iss. 4. P. 513–524. https://doi.org/10.1080/00207177808922388
  12. Банит Ю. Р., Беляев М. Ю., Добринская Т. А., Ефимов Н. И., Сазонов В. В., Стажков В. М. Определение тензора инерции международной космической станции по телеметрической информации. Препринт ИПМ им. М. В. Келдыша РАН. 2002. № 57.
  13. Molodenkov A. V. On the solution of the Darboux problem // Mechanics of Solids. 2007. Vol. 42, iss. 2. P. 167–176. https://doi.org/10.3103/S002565440702001X
  14. Molodenkov A. V., Sapunkov Ya. G. Analytical solution of the optimal slew problem of a spherically symmetric spacecraft in the class of conical motion // Journal of Computer and Systems Sciences International. 2013. Vol. 52, iss. 3. P. 491–501. https://doi.org/10.1134/S1064230713020081
  15. Molodenkov A. V., Perelyaev S. E. Solution of approximate equation for modified rodrigues vector and attitude algorithm design // Journal of Guidance, Control, and Dynamics. 2021. Vol. 44, iss. 6. P. 1224–1227. https://doi.org/10.2514/1.G006008


Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>