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Annoramnusa. Vccaenyorcs necaMOCONpsi2KeHHbIE 0OBIKHOBEHHBIE M depeHITnaAIbHbIE OTIEPATOPHI BTO-
POro MopsiJika Ha KOHEYHOM MHTEPBAJIE ¢ KOMIIEKCHBIMY BECAME. YCTAHOBJIEHBI CBONCTBA CIIEKTPAJIBHBIX
XapaKTEPUCTUK U U3Yy4aeTcss o0paTHasl 3ajava BOCCTAHOBJICHHUS ONEPATOPOB 110 MX CIEKTPAJbHBIM Xa-
pakTepucTukaM. [ljist 3TOro Kiacca HeJUHEHHBIX 0OpaTHBIX 3aJa4 MOJIYYeH aJrOPUTM IS HOCTPOCHUS
JI00AJIBHOTO perienust. JlJist mceeoBanus 3TOT0 KJIacca OOPATHBIX 3a/1a9 UCIIOIL3YeTCsl Pa3BUTHE UIei
METO/Ia CIEKTPAIBHBIX OTOOPaYKEHUIA.
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Introduction

We consider the boundary value problem L for the differential equation
—y"(2) + q(x)y(x) = Mr(2)y(z), 0<a<T, (1)
subject to the Robin boundary conditions
U(y) :=y'(0) = hy(0) =0, V(y) :=y'(T) + Hy(T) =0, (2)
and the jump conditions at an interior point b € (0,7):
y(b+0) =diy(b—0), y'(0+0)=yb—0)/d+ day(b—0). (3)

Here A is the spectral parameter, ¢(x) and r(z) are complex-valued functions, ¢(x) € L(0,T),
and r(z) = a} for x € (bg_1,bg), where 0 = by < by = b < by = T. The numbers h, H, ai, and
dy, are complex, and ay # 0, d; # 0. For definiteness, let argd; € [0, 7).

We study the inverse spectral problem for the boundary value problem (1)—(3). Inverse
spectral problems consist in recovering operators from their spectral characteristics. Such prob-
lems play an important role in mathematics and have many applications in natural science and
technology. Inverse spectral problems are also used for solving nonlinear integrable evolution
equations of mathematical physics. Inverse problems for the classical Sturm — Liouville operators
(when r(z) = 1, di = 1, and dy = 0) have been studied fairly completely (see [1] and the
historical review therein). Inverse problems for arbitrary order differential operators and systems
with arbitrary characteristic numbers are more difficult. They have been solved later by the
method of spectral mappings (see the monographs [2,3| and the references therein). Inverse
problems on spatial networks are an important and popular part of the inverse problem theory;
in the review paper [4], one can find the main results on inverse problems on spatial networks.
Boundary value problems with discontinuous weights and jump conditions at interior points have
been considered in many papers, but mostly for the case with real weights. In the case when
r(z) = 1 (i.e., ax = 1), the boundary value problem L satisfying conditions (3) was studied
in [5-9] and other papers. Inverse problems for a real weight r(z) were studied in [10-15] and
other works. Inverse problems for the boundary value problem L with complex-valued weights
were studied in [16, 17|, where only uniqueness results were obtained.

Note that complex-valued weights appear, in particular, in the study of the interaction of
electromagnetic waves with layered media possessing both dielectric and magnetic properties [18].
Moreover, a number of problems for Sturm — Liouville equations on curves in the complex plane
can be reduced to the boundary-value problem L of the form (1)-(3) on a real interval. In the
present paper, we establish properties of the spectral characteristics for L and study the inverse
spectral problem of recovering parameters of L from the given spectral characteristics. For this
class of nonlinear inverse problems, an algorithm for constructing the global solution is obtained.
To study this class of inverse problems, we develop ideas related to the method of spectral
mappings [2].

1. Spectral data

Let I := by — bg—1 and ax = rpexp(igr), 1 > 0, 0 < @2 < ¢1 < 7. We assume that
the following regularity condition holds: wy := dyas + a1/dy # 0. Denote by ®(x,\) the
solution of (1) such that (3) holds and U(®) = 1, V(®) = 0. Let M(X) := ®(0,A). We will
also use the solutions p(z, A), ¥ (x, A), S(z, A) of Equation (1) satisfying (3) and the conditions
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©(0,\) = 1, ¢(0, )\) h, S(0,\) = 0, S'(0,\) = 1, ¥(T,\) = 1, ¥/(T,\) = —H. Denote
D(a, A, ) i= —p)~Hp(, A), p(a, ), where (y(), 2(2)) := y(a)2 ( )~y (x)2(x). The function
A(A) = (p(x, A), ¥(x,A) = =V(p) =U(¥) (4)

does not depend on z, and it is called the characteristic function for L. The eigenvalues
A := {A;}r>0 of L coincide with the zeros of the entire function A(\). Clearly,

Dz, A) = Sz, A) + M(A)p(x,A) = (2, A)/AN),  M(A) = Ao(A)/AN), (5)
where Ag(A) :=(0,\) = V(S). Using (4) and (5) one gets
(p(z,A),®(x,2) =1 (6)
Let A = p?, A, = p:. Consider the half-planes Hf = {p: £Im(pax) > 0}, k = 1,2, and
denote
Sy =17 NIy, So=H0; NI}, Ss3=IM0; NI, Sy=IMIfNII;.
Then S; = {p : argp € (0},0j41)}, where 01 =05 = —po, 0o =7 — @1, 03 =T — @2, 04 = —¢1.
For sufficiently small 6 > 0, we construct the sectors S;s := {p:argp € (0; + 6,011 —9)}.
Let {ex(z, p)}r=1,2, « € [0,b] and {Ey(x, p) }r=1,2, * € [b,T] be the Birkhoff-type fundamental
systems of solutions (FSS’s) of Equation (1) with the asymptotics as |p| = oo, p € S, v = 0,1

(see [1]):
el (x, p) = (~1)* Vipar)” exp((—1)*Yipar2)[1], « € [0,8],
B (2,p) = (~1)* Yipas)” exp((—1)* Lipaz(z — b))[1], @ € [b,T],

where [1] = 1+ O(1/p). The functions e,(:)( p) and E(V) (x, p) are regular for p € Sj, |p| > p*
and continuous for p € S}, |p| = p* for some p* > 0. Usmg these F'SS’s and the jump conditions
(3) we get the following asymptotical formulas as |p| — oo, v = 0, 1:

o (2. 2) = ((ipam)” explipara)[1] + (—ipar)” exp(~iparz)[1]) /2, = € [0,8],
) = ((wr explipartn)[1] + w- exp(—ipart)[1]) (ipaz)” explipaz(z — b)) [1]+
+(w exp(zpa1z1>[1]+w+exp< iparh)[1]) (—ipaz)” exp(—ipas(z — B))[1]) /(4az), @ € b, T],
w exp(ipaslz) 1] — w- exp(—ipasla)[1]) (ipar)"” exp(ipar (b — 2))[1]+
(= w- explipashy)[1] + wy exp(—ipazta)[1]) (—ipar)” exp(~ipar(by — 2))[1])/(dar), @ € [0,1],
60 (@, \) = ((~ipas)” explipaz(T = 2))[1] + (ipaz)” exp(—ipax(T — 2))[1]) /2, @ € [b,T).

In view of (4), these formulas yield

AWM = (~ip)( (s explipartn) [1] + w- exp(~ipark)[1] ) exp(ipazl)[1]-

— (w- expliparhn)[1] + wy exp(—iparhy)[1]) exp(—ipazla)[1]) /4, |p] = oo, (7)
M) = £(ipar) '[1], p € IE. (8)

Using (7) by the known technique (see [1, Ch. 1]) we obtain that the spectrum A of L consists
of two subsequences A = { A} = { A1} U{ A2}, and

km .
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where C} = —(2ia1l;) ' In(—w_/w,), Cy = (2iasly) ! In(w, /w_). Moreover,
AN = Clp&r(ph)a(pl2)l, M) < C/lpl, X e Gs,
p(2, )| < Clér(pr)], = €(0,0), VA,
(@ )| < CI& (p)Eap(z — b)),z € (BT), WA, (10)
B, V] < Clo&i(pr)| !, € (0,0), Ae Gy,
B V| < Clo&s(pr)&(ple )Y, we (BT), AeGy,

where Gs := {p : |p — pr|} = 9, E(px) = exp(Fiparx) for p € Hf, x € li. Let my be the
multiplicity of the eigenvalue A\, (A = Agt1 = ... = Mg, —1), and put

S = {k >1: 1 # /\k}U{O}

It follows from (9) that for sufficiently large k (k > k*) all eigenvalues are simple, i.e., mj =1
for £ > k*. Similar to [19] one gets

mp—1

Mk+1/
Y e )
keS v=0
M,
where Z()\_f\# is the principal part of M () in a neighborhood of A\x. The sequence

M = {My}g>o is called the Weyl sequence of L, and the data W = { A, My }r>o are called the
spectral data of L. Similar to (9) we calculate M = { M1} U { M2}, and

M = o2 (1+0(5)): M= e (ST e isma) (1+0(g)). 12

as k — oo. Here o := 1 — @9 + 7/2. Note that cosa < 0, since a € (7/2,37/2). Using (7), (9),
(10), (12) and the asymptotical formulas for p(z, A) and ¢ (x, \), we obtain the estimates

—kmrily cos o
[l M)l S, ol M)l < Cexp (228 g e (0,7, (13)
ralo
It follows from (8) and (9) that
@ = lm (ipM(\)™!, peTr, (14)
|pl—o0
I =b=— lim (kn/(a1pr1)), lo=T—1, ag= lim (kn/(l2pk2), (15)
k—o00 k—o0
A=y fuo- = lim expipaarly). dy = /(a(A+ D)/(az(A = 1) (16)

2. Inverse problem

In this paper, we consider the following Inverse problem:

Given the Weyl function M(X) (or the spectral data W), construct L.

According to (11), the specification of the Weyl function is equivalent to the specification of
the spectral data.

Firstly, we will prove the uniqueness theorem. For this purpose, together with L we consider
a boundary value problem L of the same form but with ¢(x), b, #(z), h, H, dy, dy instead of
q(z), b, r(x), h, H, d1, do. We agree that if a certain symbol x denotes an obJect related to L,
then ¥ will denote an analogous object related to L.

Theorem 1. If M(\) = M()\) (or W = W), then L = L. Thus, the specification of the Weyl
function (or the spectral data) uniquely determines the functions q(x), r(x), and the parameters
b, h, H, dy, ds.

328 HayuyHbiii otgen



V. A. Yurko. Solution of the inverse spectral problem for differential operators on a finite interval @

Proof. It follows form (14)-(16) that b = b, ay, = @, di = d;. We construct the functions
Po=®p— pd, P =pd —0F. (17)
In view of (6), this yields
p=P1g+Po@, ®=P1d+P®, Pi—-1=p(@ —-d)-o —¢). (18)
Using (5), (17), (18) and the asymptotical formulas for ¢ and 1, we infer
[Pi(z,A) =1 < C/lpl,  [Polz, M < C/lpl,  p€Gsn G (19)

Taking (5), (17) and the assumption of the theorem into account, we conclude that the functions
Pr(x, A) are entire in A for each x. Together with (19), this yields Pi(z,A) = 1, Po(z,\) = 0.
Using (18) we calculate p(z,\) = @(z, A), ®(z,\) = ®(z, A), hence L = L. O

Let us go on to deriving a constructive solution to the inverse problem. For this purpose, we
will use ideas of the method of spectral mappings [2]. We will reduce our nonlinear inverse problem
to the solution of the so-called main equation, which is a linear equation in a corresponding
Banach space of sequences. We give a derivation of the main equation, and prove its unique
solvability. Using the solution of the main equation we provide an algorithm for the solution of
the inverse problem considered. For simplicity, in the sequel we confine ourselves to the case when
the function A(\) has only simple zeros (the general case requires minor technical modifications).

Let the Weyl function M () and the spectral data W be given. Using (14)—(16), we compute
b, ax, and d;. Then we choose a model boundary value problem L such that b = b, a, = ax,

di1 = dp, and arbitrary in the rest (for example, we can take § = 0). Let 0 := 1 if Ay = A1, and
0r := exp(—kmrili(raly) "' cos a) if A\ = Apo. Denote

&= |pr — prl + [ My — My|02,  zro = Me, 201 := My Bro = My, Br:= M.

By virtue of (9) and (12), one has & = O(1/k). Consider the functions

orj(T) == oz, 215),  Prj(z) == P(x, 215), 7 =0,1,

Bui k(%) := D(2, 2ni 2k))Brjs  Buinj (@) := D(, 2niy 245) Brjs 4,5 = 0,1,
fro(@) = (pro(z) — wr1(2))/(EkOk),  fra(z) := @r1(z)/ Ok,
Anoko() = (Bnoko() — Bni,ko(2))Ek0k/ (nbn),

Api g (x) == (Brigo(®) — Bui g1 (2))0k/0n, Aniko() := Bpiko(2)Ex0k/0n,
Ano k1 (x) = (Broko(x) — Bni1,ko(x) — Bpoki (2) + Bri k1 (x))0k/(€n6n)-

Similarly fi;(2) and A 1;(z) are defined. Using (9), (12), (13) and the asymptotical formulas
for o(z, ) we get

s @) 1 (@) S Cy - [ Anig ()], [ Anipg ()] < Céx(In — k| + 1)1 (20)
Denote by V the set of indices u = (n, %), where n > 0, ¢ = 0.1.

Theorem 2. The following relation holds

me( f'm Z Am kj fkj( ) (n,z) cV, (21)

(k.g)eV
where the series converge absolutely and uniformly on x € [0,T] and X on compact sets.
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Proof. Consider the contours I'y := {\: |\| = Ry}, where Ry — oo such that I'y C Gs.

Denote Sy, := {p : Im(par) = 0}, So := S1US2, S := {p : dist(So,p) = 0}, where 6 > 0
is such that AUA C intS. Let v be the image of S in the A-plane, and I'y := 'y Nint~,
I = Tn \ Iy, 7& = v NintTy. Denote by vy := vi Uy and 7% := 74 U T’ the closed
contours with counterclockwise circuit. Applying Cauchy’s integral formula we get

1 Pr(x, 1) —51kd 1 Pk(%ﬂ)d 1 Pr(w, 1) — 61

Pz, \) — 01 = — g | -
N

= — du,
omi Sy A—n 2ri :

TN

where k = 0,1, A € int~Y;, and d;1 is the Kronecker delta. Taking (18) into account we calculate

Pl 0 = 2N + 5 [ (B NPy ) + & AP 0) 52 + e ).

In view of (19), one has A}im en(x,\) = 0 uniformly in « € [0,7] and A on compact sets. Taking
—00
(17) and (5) into account we obtain

95(1'7 /\) - 30($7>‘) + 5

5 | D@ Am(M () = M(w)e(e, ) + e (e, ).

TN

Note that the terms with S(z,\) and S(x, \) are zero because of Cauchy’s theorem. Using the
residue theorem we get the relation

Sbm,( Sonz + Z ( ni, kO (pk(]( ) - Bni,kl(x)@kl(SU))a

k=0
which is equivalent to (21). O
By similar arguments, we calculate
Ani,kj(x) - Ani,kj(x) + Z Ani,ls(m)Als,kj (;L') = 07 (n, 7’)7 (k7]) eV. (22>
(l,s)eV

Let f(z) = [fu(@)]uev, A(@) = [Aup(2)]uvev, JE(37) = [fu(x)]ueVa A(x) = [Auw(x)]u,vEV We
denote by m the Banach space of bounded sequences x = [xu]ucy with the norm || x|| = sup,cv |xul-
According to (20), one has that for each fixed z, the operators I + A(x) and I — A(z), acting
from m to m, are linear bounded operators. Relations (21) and (22) can be written as follows:

fx)= (I +A@)f(z), (I+A@)I ~Ax)) =

Symmetrically one has f(z) = (I — A(x)f(z), (I — A(z))(I + A(x)) = I. Thus, for each
fixed x, the operator I + A(z) has a bounded inverse operator, hence the linear equation
f(x) = (I + A(x))f(z) is uniquely solvable. This equation is called the main equation of the
inverse problem. Solving the main equation we find the vector f(z), and also the solutions
oni(x) = @(x, Ani) of Equation (1); hence, we can construct ¢(z), h, H, and dy. Thus, the
solution of the inverse problem can be found by the following algorithm.

Algorithm. Given the Weyl function M () and the spectral data W.

1. Calculate b, ag, and d; via (14)—(16).
. Choose a model boundary value problem L such that b = b, ar = ay, di =d;.
. Construct f(z) and A(zx) (see above).
. Find f(x) = [fuluev by solving the main equation f(x) = (I + A(z))f(z).
. Calculate Sonl(x) = fnl(x)em Pn0 = ¥nl (:L') + an(fE)gnen
. Find ¢(x), h, H and ds using (1)—(3).

S O = W N
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Remark 1. We can also calculate g(z) by the formula ¢(z) = ¢(z) — 2F(z), where

- di Z <Mk0§0k0 )ero(T) — Mkl@kl(m)SDkl(J:))'
k=
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