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Abstract. We study an optimal investment control problem for an insurance company having two
business branches, life annuity insurance and non-life insurance. The company can invest its surplus
into a risk-free asset and a risky asset with the price dynamics given by a geometric Brownian motion.
The optimization objective is to maximize the survival probability of the total portfolio over the infinite
time interval. In the absence of investments, the portfolio surplus is described by a stochastic process
involving two-sided jumps and a continuous drift. Downward jumps correspond to the claim sizes, and
upward jumps are interpreted as random gains that arise at the final moments of the life annuity contracts’
realizations (i.e., at the moments of death of policyholders) as a result of the release of unspent funds. The
drift is determined by the difference between premiums in the non-life insurance contracts and the annuity
payments. The solving to the optimization problem that yields the maximal survival probability, as well as
the optimal strategy, is related to the classical solution of the corresponding Hamilton — Jacobi— Bellman
(HJB) equation, if this solution exists. In the considered risk model, HJB includes integral operators of
two types: Volterra and non-Volterra ones. The presence of the latter makes the asymptotic analysis of
the solution quite complicated. However, for the case of small jumps (when the jumps have exponential
distributions), we obtained asymptotic representations of solutions for both small and large values of the
initial surplus.
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Amwnnorarnus. Vccneayercs npobjiema ONTUMAIBHOTO YIIPABACHUST HHBECTUIUAMU JIJIsi CTPAXOBON KOMIIa-
HUU, UMEOIEil JIBa HAIIPABJIEHUsI OM3HECA: CTPaxOBaHUe IOKU3HEHHON PEHTHI U PUCKOBOE CTPaXOBAHUE
(ne cBszaHHOE CO cTpaxoBaHneM »KusHu). KoMianums MoXKeT WHBECTHDPOBATH CBOI U3JIMINEK B OE3PUCKO-
BBIIl AKTUB ¥ PUCKOBBIN AKTUB C JIMHAMUKON [EH, 33 JAHHON MeOMETPUIECKIM OPOYHOBCKUM JIBUYKEHUEM.
Iesibro onTuMU3aIUU SBJISIETCS MaKCUMU3aIlUsl BEPOSITHOCTH HEPA30PEHUSI 110 CYMMapHOMY HOPTdETo
Ha OECKOHEYHOM HWHTEpBaJie BpeMeHU. [Ipu OTCyTCTBUU WHBECTUIUN WM3IUIIEK TOPTQESIsST OMUCHIBACTCS
CTOXACTUIECKUM TIPOIECCOM, BKITIOUYAIONIIM JBYCTOPOHHIE CKAYKU U HEMPEPBLIBHBINA JIE€TePMUHUPOBAHHBIIH
cuHoc. CKavKy BHU3 COOTBETCTBYIOT pa3MepaM TPeDOBaHUil 10 PUCKOBOMY CTPAXOBAHUIO, & CKAYKH BBEPX
UHTEPIPETUPYIOTCS KaK CIIyJaifHble JJ0X0/bl, BOSHUKAIOIINE B KOHEYHBIE MOMEHTHI PEAJIU3AIIH JIOTOBOPOB
HOXKU3HEHHOH PeHTHI (T. €. B MOMEHTHI CMEPTHU CTPAXOBaTesell) B Pe3y/IbTare BLICBODOXKICHUS HEU3PAC-
XOJIOBAHHBIX CPEJICTB. HenpephiBHBII CHOC OIpesesisieTcsi PAa3HOCTHI0 MEXKJY MPEMUSIME 110 JIOIOBOPaM
PHCKOBOTO CTPAXOBAHUs ¥ AHHYUTETHBIMU ILIATEXKaMd. Pelerne 3a/a9u ONTUMHU3AIIH, KOTOPOE J1aeT
MaKCUMAJbHYIO BEPOSATHOCTh HEPA30PEHUS, 8 TakKyKe ONTUMAJILHYIO CTPATErHIO, CBI3aHO € KIACCHIECKIM
peIllleHrneM COOTBETCTBYIONIEro ypasHeHus: Lamumibrona — dkobu — Besumvana (HIB), ecim 310 pemienne
cymectByeT. B paccmarpuBaemoit mosen pucka HJB BkiovaeT nHTErpabHbIe OMEPATOPHI JABYX THIIOB:
BOJIbTEPPOBCKYE U HEBOJBTEPPOBCKUE. Hamdme mocieHuX JeiaeT acuMITOTHIeCKU aHAIN3 PEIleHus
JIOCTATOYHO CJIOKHBIM. OHAKO It CJlydasi MAJIbIX CKAIKOB (KOIJIa CKAYKHU UMEIOT [MOKA3ATeIbHOE Pac-
[peJIeSIeHne) IOy I€Hbl ACUMIITOTUIECKHE TIPEJICTABIICHNST PEIIEHUH KaK JJTsT MAJIBIX, TaK ¥ JJIst GOJIBIITIX
3HAYEHUH HAYAIHLHOIO Pe3epBa.

KurouyeBbie ciioBa: crpaxoBaHue, JBYCTOPDOHHUE CKAYKW, MHBECTUIINU, PUCKOBBII AKTUB, BEPOSTHOCTH
Hepazopenusi, ypasaerue ['amuiabrona — Axobu — Bermvana
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Introduction

The optimal investor behavior whose objective is to minimize the ruin probability in the
presence of uncontrollable stochastic cash flow, or a risk process, was first studied in [1]. It was
assumed that the risk process (for example, the surplus of an insurer) is described by Brownian
motion with drift and the risky stock price following a geometric Brownian motion. Such a model
of the surplus process for the insurer can be obtained as a result of the diffusion approximation
of the net claims process in the classical Cramér-Lundberg (CL) model [2]|. For the case when
there is no risk-free interest rate, it was shown in [1] that the non-constrained optimal policy is to
always invest a constant amount of money into a risky asset (regardless of the level of surplus).
If the interest rate is positive, the optimal control is a state-dependent function. In particular,
for the case of zero correlation between the processes of insurance risk and of asset price, it was
shown that the optimal amount tends to zero as the surplus tends to infinity.

For the CL model (a compound Poisson risk model with negative jumps and positive determi-
nistic drift), the structure of the optimal strategy changes crucially at least, at low level of surplus:
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a constant amount (CA) strategy, which is similar to the one described above, cannot be optimal,
because it leads to immediate ruin at zero initial surplus. This is contrary with to a non-zero
survival probability at zero initial surplus in the absence of investments. Moreover, as shown
in [3,4], the optimal amount tends to zero as the surplus tends to zero. Nevertheless, the optimal
strategy requires borrowing money when the surplus level is close to zero.

Of course, borrowing restrictions can also lead to significant changes in the optimal investment
behaviors; moreover, unexpected effects can arise in the zone of low surplus levels. For the CL
model, the optimal investment problem with limited leveraging level and allowed shortselling
was studied in [5]: it was shown that some unusual strategy (short-selling the high return stock
to earn interest) can be optimal when a strong investment constraint on borrowing (money) and
buying (stock) is imposed. As for the optimal investment strategy in the CL model at large levels
of surplus, it turns out to be asymptotically close to some CA strategy in the case of small jumps
in the risk process (i.e., in the case when exponential moments of jumps are finite, see, e.g., [6,7]).

In the case of zero interest rate, some (non-zero) CA strategy again becomes optimal for
arbitrary initial surplus (not only asymptotically) if we consider a compound Poisson risk model
with small positive jumps and negative deterministic drift (see [8]), which is interpreted as a life
annuity insurance model [2|. In the general case of a non-negative interest rate, a limit value of
the optimal amount at zero surplus is also not zero for this model, as well as for the diffusion
risk model [1] and for the CL model perturbed by diffusion [9].

Let us recall that, as stated above, in the CL model, the corresponding limit (at zero surplus)
is equal to zero. As will be shown below for a more general model with two-sided jumps, this fact
can be established a priori (i.e., before solving the optimization problem), and it is important
for formulating the correct condition on the solution to Hamilton—Jacobi—Bellman equation
(HJB equation) as the optimal survival probability function (in particular, this condition allows
us to reject the solution corresponding to the CA strategy). We show in this paper that in the
case of exponential distributions of jumps, the optimal strategy, the value function, and some
additionally introduced function satisfy a system of nonlinear ordinary differential equations
(ODE) of the first order with initial conditions depending on an unknown parameter. This
parameter can be calculated after solving the problem for the ODE with a parameter using the
normalization condition. As a result of the asymptotic study of the ODE system, we obtain
asymptotic representations for the optimal strategy and the value function.

1. The model description and optimization problem

We will consider below the optimal investment problem in the presence of an uncontrollable
risk process with two-sided jumps. This process can be considered as a surplus process of an
insurance portfolio that combines surpluses for two types of insurance business: life and non-life
insurance (see [10,11] and references there). The total portfolio surplus is of the form

N, (t)

N(t)
Ry=u+ct+ Y Yi=> Zj t>0 (1)
i=1 j=1

Here R; is the total portfolio surplus at time ¢ > 0; w is the initial surplus, c is the difference
between the premium rate in non-life insurance and the life annuity rate (or the pension payments
per unit of time), assumed to be deterministic and fixed. Ni(t) is a homogeneous Poisson process
with intensity A; > 0 that, for any ¢ > 0, determines the number of random revenues up to
the time ¢; Y; (k = 1,2,...) are independent identically distributed (i.i.d.) random variables
(r.v.) with a distribution function G(z) (G(0) = 0, EY; = n < oo, n > 0) that determine the
revenue sizes and are assumed to be independent of Nj(t). These random revenues arise at the
final moments of the life annuity contracts’ realizations. Further, N(t) is a homogeneous Poisson
process with intensity A > 0 that, for any ¢ > 0, determines the number of claims up to the time
t; Z (k=1,2,..) are i.i.d. r.v. with a distribution function F(z) (F(0) =0, EZ; = m < oo,
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m > 0) that determine the the claim sizes and are assumed to be independent of N(t). In
addition, we assume that the processes of total premiums and total payments are independent.
If A1 =0, A > 0, we have a CL model (only with the second sum in (1)); if A; > 0, A =0 (only
with the first sum in (1)), this is the life annuity insurance model.

Suppose that at time ¢, the insurance company invests a fraction a; of the surplus to a
risky asset whose price follows a geometric Brownian motion dS; = uSidt 4+ oSidw;, where pu
is the stock return rate, o is the volatility, and w := {w;}¢>0 is a standard Brownian motion
independent of {N(t)}10, {N1(t)}i=0 Yi's and Z;. The rest fraction (1 — ay) of the surplus is
invested in a risk-free asset which evolves as dP; = rP;dt, where r is the interest rate.

With dynamic investment control, denoted by 7 := {as}s>0, the surplus process is governed
by

dX[ = (p—r)ou X[ dt + rX[dt + cou X[ dwy + dRy, t >0, Xp=u, (2)

where R, is defined by (1).

Definition 1. A control policy m := {as}s>0 is said to be admissible if oy satisfies the
following conditions:

(i) oy is Fi predictable where {Fi}i>0 is a filtration generated by processes {w;}i>o and
{Rt}e=0;

(ii) oy X[ is square integrable over any finite time interval almost surely.

Note that we do not impose assumption 0 < oy < 1 for ¢t > 0. This means that we allow both
borrowing and shortselling, and a; € R, t > 0.

We denote by II the set of all admissible controls. The survival probability of the process
X[ defined in (2) under policy 7 € Il is ¢™(u) = P (X7 > 0, ¢t > 0), and the maximal survival
probability (the value function) is

V(u) = sup ¢ (u). (3)
mell

It is clear that V' (u) is a non-decreasing function by its definition. If we assume that V' is
twice continuously differentiable, then it solves the following HJB equation:

sup{%cr?azu?v"(u) V@)@l =)+ rutd = A+ M)V (u)+

a€R
N [ V(u—2)dF(z)+ M\ | V(u+2)dG(z); =0, u>0. (4)
0/ 0/ }

2. Preliminary results for the case r=0: Lundberg bounds for ruin
probabilities under CA strategies and lower bound for the value function

Let us return to the controlled process of the form (2) and denote A; := ;X[ Then A; is an
amount of money invested in a risky asset at the moment ¢, and equation (2) can be rewritten
as

dX[ = (p—r)Awdt + r X[ dt + c Aydwy + dRy, t20, Xo=u.

If r =0 and A; = A for some constant A, then we have a CA strategy and the corresponding
process (for brevity, we will denote it as X/') satisfies the equation

X = pAdt + cAdw; +dRy, t>0, Xo=u. (5)

This process can be considered as a process R; perturbed by diffusion with drift (in the case
A #0). Assuming finiteness of exponential moments of Y7 and Z, we can write the equation

1
MMz, (7) = 1) + M(Moy, (v) = 1) = (e + pd)y + 50" A% =0,
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where Mz(+) is the moment generating function of r.v. Z. It can be checked that if there exists

a positive v(A) satisfying the last equation (so-called adjustment coefficient), then the process

exp(—yX{') is a martingale with mean equal to exp{—y(A)u}. This property allows us to obtain

the Lundberg bounds for the ruin probability ¥4 (u) = 1 — ¢4(u): ¥4 (u) < K exp{—y(A)u} for

some constant K, 0 < K <1 (for the CL model perturbed by diffusion see, e.g., [12]). It is easy

to understand that, for v = supy(A4), the maximizer A* is also the minimizer for the equation
A

1
inf | A(Mz, (7) = 1) + M(Moy; (7) = 1) = (e + pA)y + 50 A%?| =0,

therefore, we get A* = %, where v is a positive solution of the equation
gy

2
AMz, (1) + Moy, (7) = A A+ ev+ 0 (6)
(for the case A\ = 0, i.e., in CL model with investments, the corresponding equation see in [7]).
Let us introduce the following assumption:

(A) ¢>0; the safety loading is positive, i.e., ¢+ Ajn — Am > 0.

If the assumption (A) holds, then the positive solution of the equation (6) is unique (we will
see it below for the case of exponential distributions of jumps). Thus, we get the best estimate
in the set of all CA strategies: ¥4"(u) < K exp{—yu}, hence, for the value function (3) the
following inequality holds: V(u) > 1 — K exp{—~yu} for some constant K, 0 < K < 1 (recall
that v is a positive solution to equation (6)). This is in contrast with the power asymptotic
representation at infinity of the survival probability in the case when the whole of the surplus or
some of its constant proportion is invested in a risky asset; see [10] and comments in [11].

The case of exponential distributions of jumps

Let F(z) =1—e#/™ G(z) =1—e */" m,n > 0. Then the equation (6) can be rewritten
in the form

A Ayn o p?
=\ —. 7
1—m +C’Y+1+’yn+202 (M)

For simplicity, we will assume here that assumption (A) is fulfilled. In the case p = 0 (without
investments), it is easy to see that there exists a unique positive solution 79 < 1/m of (7) (at
the point 1/m we have a vertical asymptote: 1/(1 —ym) — oo, v 1 1/m). The Figure shows the
graph of a convex function of 4 defined on the left side of the equation (7) and two graphs of
concave functions defined on the right side of the equation (7) for = 0 (lower curve)

and for x> 0 (upper curve). The

12 A intersection points correspond to the

solutions of the equation (7): it is obvious

10 - that 79 < 7 < 1/m, where ~y satisfies (7)
for pu > 0.

87 Thus, CA strategy A; = A* gives

the best Lundberg bound among all CA

67 ” strategies, including zero strategy A; = 0

(without investment). However, let us show

4 that any CA strategy A: = A, A # 0 is

5 worse than zero strategy for small levels

of the surplus. Thus, any CA strategy

0 —————— [ Y ] Ay = A, A # 0 cannot be optimal for the

0 0.1 0.2 0.3 04y, 05  optimization problem (3). Indeed, for the

survival probability ¢ (u) of the process

Fi . Adjust t coefficients "
1BUTE. ACJUSHIMELE COCTACICNTS (5), where A # 0, we have the condition
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©4(0) = 0 due to Brownian perturbation. Moreover, it can be shown that hrﬂo 04 (u) = 0. At
u—

the same time, in the case of zero CA strategy and exponential distributions of jumps it is easy
to obtain (using the method of integro-differential equations (IDE); in a more general case, see,
for example, [11]) the exact formula for survival probability ¢ (u):

¢%(u) =1 — (1 — yom) exp(—you), (8)

where g is defined above. Therefore, ©°(0) = ygm > 0, and we see that CA strategies cannot
be optimal. But in 7] it was shown that, for the CL model with small claim sizes, the optimal
strategy as a function of the surplus converges, as the surplus tends to infinity, to the value

A* = QL that maximizes the corresponding adjustment coefficient, where ~; is the unique
"N

positive solution to equation (6) (or (7) in the case of exponential distributions of claim sizes)

with Ay = 0. In addition, the Cramér-Lundberg approximation for the minimal ruin probability

was obtained: there exists a constant ¢ € (0,00) such that lim (1 — V(u))exp(yiu) =s.
U—00

In what follows, we will show (for the case of exponential distributions of jumps) that similar
asymptotic representations for the optimal strategy and value function can also be obtained for
a more general risk model, i.e., for A\; > 0; the case of non-negative interest rate will also be
included. For this we propose to use the asymptotic analysis of solutions to a certain singular
problem for a system of nonlinear ODE, which is satisfied by an optimal strategy, a value function
and a certain additionally introduced function.

3. General case (non-negative r): Conditions for the solutions of HJIB equation

Let us turn to the HJB equation (4). Suppose V' is a twice continuously differentiable function
and V solves (4). Let us also assume that V' satisfies the conditions

lim V(u) =1, (9)

U— 00

V'(u) >0, V"'(u)<0, u>0. (10)

(Note that if the second derivative of the function V(u) is non-negative at some point u > 0,
the supremum in (4) is not achieved. The condition (9) is obvious in the case of a positive safety
loading taking into account (8); in the general case it can be justified by the results [10] about
the asymptotic representation for the survival probability at a constant proportion of risky assets
(¢ =, 0 < v < 1) in the insurer’s surplus). Then the maximizer of the right side of the HJB
equation has the form

(b —r)V'(u)

a?uV'"(u) - (11)

Taking the expression (11) in (4), we obtain the nonlinear integro-differential equation (IDE)

af = aj(u) == —

u

(ru+ )V (1) — (A4 A1)V () + A / Vi(u—2)dF(z) + M / Vu+ 2) dG(z) =
0

0
2V ()2
_ QJQ)V("’/(U() ) , u>0. (12)
Denote A(u) = uaj,(u), then

Note that for reasons similar to those that require to rejecting the CA strategy producing
the Brownian disturbance, we must also conclude that the function A(u) satisfies the condition

A(+0) = ul_i)rgoA(u) =0. (14)
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Then, setting v — 0 in (12) in the assumption of finiteness of V/(+0) = lim, o V' (u) and
taking to account the relations (13), (14), we obtain the following non-local condition:

cV'(+0) = A+ 2)V(0) + M / V(z)dG(z) = 0. (15)
0

The case of exponential distributions: Singular problem for ODE system
Let us introduce the function

exp(u/n)

R(u) = Vi) /uoo exp(—z/n)V'(z)dz. (16)

Note that, taking into account integration by parts in (15) with G(y) = 1 —exp (—y/n), the
condition (15) can be rewritten in the following form:

cV'(+0) — AV (0) + M V' (+0)R(+0) = 0. (17)

From this we conclude that V/(+0) > 0 (recall that V(0) > 0 for the value function in
the considered model in view of the formula (8) for the survival probability in the absence of
investments; as its consequence we have V' (0) > yom).

Theorem 1. Let ¢ > 0, F(z) =1 — e #/™, G(z) = 1 — e */", m,n > 0. If there exists a
twice continuously differentiable solution V' of equation (12) with the conditions (9), (10) and
(15), then:

1) pair of functions A, R, defined in (13), (16), is a solution of the following singular initial
problem for nonlinear ODE system:

(

P = A= (ruto) {fﬁ‘” —1]+

(18)

+,u;r [A’(u)—{—%A(u) B (MU—QT)} N (+> R(u) =0,

| R(u) = R(u) <71L + ff‘;;(:g) 1

with initial conditions (14) and (17) and unknown parameter V(0)/V'(+0) > ¢/X;

2) V(u) is the mazximal survival probability for the process (2) in the class of all admissible
control policies, i.e. V(u) is the solution of the optimization problem (3); optimal control has the
form of = A(X})/ X[, where X, t > 0, is the corresponding solution of equation (2);

3) the functions V., A, R have the following asymptotic representations:

a) for small values of the surplus

A(u)NM u, u—0,
o

Rl ~ AV<0>/K1<+0> —c (1 L e=1) \@ T e

V(u) ~ V(0) + V'(40) (u - ﬂ?ﬁf;f)u?’ﬂ) , u—0;

b) for large values of the surplus in the the case r > 0:

T N R

o2 r o2

322 HayuyHeiii otgen



T. A. Belkina et al. Asymptotics of optimal investment behavior under a risk process _@

i the case r = 0:

A(u)fv%, u — 00,
R(u)wl—ffyn’ U — 00,

V(u) ~1— Kexp(—yu), u— 00,
where 7 is the unique positive solution of equation (7) and K > 0.

Recall that v < 1/m; compare also the asymptotic representations at infinity for the case
r = 0 with the results of the Section 2 for CA strategies.

The proof of the theorem is too long, we will not give it here. Note only that the equation for
A can be obtained similarly to the corresponding equation in [9] (not containing the function R);
the equation for R is derived by direct differentiation in (16), taking into account the relation
(13). The statement 2) about the solution of the optimization problem is proved using verification
arguments; asymptotic representations at infinity were found in the form of asymptotic series
in inverse powers of the argument; asymptotic representations at zero were obtained by the
asymptotic investigation of transformed ODE system (18) with the replacement of the function R
by another function D, linearly related to A, R and ru, while D(4+0) = V(0)/V’(+0). It remains
to be noted that this parameter can be determined numerically as a result of solving the
initial ODE problem formulated above, and finally, V(0) is determined using the normalization
condition (9) for the solution obtained with a fixed parameter. Numerical calculations require
additional studies of the ODE system.
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