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Abstract. In the conditions of a mass disease, governing bodies of an economic system face a
number of tasks related to the need to minimize its negative effects. This requires a tool that
allows timely predicting the dynamics of the situation and determining what measures need to
be taken. In this paper, a specialized mathematical model is proposed as such a tool, taking
into account socio-biological and economic factors. The model is a dynamic optimal control
problem with a delay in phase variables. The values of the model parameters were estimated using
statistical data on the COVID-19 pandemic in the Russian Federation and the Ulyanovsk region.
As target functionals, the following are considered: “social criterion” — a decrease in the number
of cases; “economic criterion” — an increase in the relative profit of an economic system. To solve
the problem, the authors apply a modification of the numerical parameterization method developed
in their early studies. The article presents and analyzes the results of the numerical experiment
aimed at studying the obtained optimal solutions. It is shown that: the optimal solution for social
and economic criteria when changing budgets is stable; most of the parameters of the optimal
solution are weakly elastic relative to the values of variables considered; the parameters of the
optimal solution when using the economic criterion are more susceptible to change than when
using the social criterion; the nature of the change in the parameters of the optimal solution for
the Ulyanovsk region and for the Russian Federation is similar. Thus, the paper offers a tool for
analyzing an economic problem in conditions of mass disease and confirms the applicability of
the tool for finding optimal management strategies in various economic systems.
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CHCTEMOH B YCJI0BHUAX MACCOBOro 3a0oJsieBaHUd
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AnHoTtanus. B ycioBusix MaccoBoro 3aboJsieBaHus Mepell OpraHaMU YIIPaBJIEeHHS] SKOHOMHUECKOH
CHUCTeMbl BO3HHMKAET psifi 3a1a4, CBSA3aHHBIX C HEOOXOAMMOCTbIO MUHHUMH3UPOBATb €r0 HeraTHBHBIE
apdextsl. s 3T0oro TpebyeTcss UHCTPYMEHT, MO3BOJISIOLIMN ONEePAaTUBHO MPOrHO3UPOBATb IHMHA-
MHKY CHTYallHH U ONpelessiTh, KaKue Mepbl TpeOyeTcsi MPHHATb. B naHHO# paboTe B KauecTBe
TaKOro MHCTPYMeHTa MpeJsaraeTcsi CrielMaJu3upoBaHHasl MaTeMaTHUecKasi MOJeslb, YYUThIBAIOLILas
collMaIbHO-OHOIOTMYeCKHe U SKOHOMHUUecKHe (hakTopbl. Mopesb npencrasisier co6oil AHHaAMHUe-
CKYIO 3a/lauy ONTHMAJbHOTO YNpaBJeHHs ¢ 3amasfblBaHHeM 110 (a30BbIM MepeMeHHbIM. 3HaYeHHs
napamMeTpoB MOJIEJIH OllEHEHbI C UCIMOJb30BAaHUEM CTATHCTHYECKHMX AaHHBIX 0 nmaHgemun COVID-19
B Poccuiickoii Penepanviv U YnbsHOBCKOH obsacT. B kauecTBe 1esieBoro (hyHKIIMOHAIa paccMaT-
PUBAIOTCS: «COLMAJbHBIE KPUTEPUH» — yMeHblleHHe KOJIUYeCcTBa 3a00/eBILINX; «9KOHOMHUUECKHH
KPUTEpPHUF» — yBeJHYeHHe OTHOCHUTEJbHOH MPHUObIIH 3KOHOMHUECKOH cucTeMbl. J{sis pelieHus 3a-
124y aBTOPaMH MPUMeHsieTCsl MOAHU(UKALMS YHCIEHHOTO MeTO/la apaMeTpU3alliy, Pa3BUBaeMOro
UMH B PaHHHUX HCCJeOBaHUsX. B cTaTbe mpencTaB/ieHbl ¥ MPOAHAJTU3UPOBAHBI Pe3y/bTaThl YHC-
JIEHHOTO 9KCIIepUMeHTa, HalpaBJeHHOro Ha MCCJ/eI0BaHHe MOJYYeHHBIX ONTHMA/bHbBIX pelleHH .
[TokazaHo, UTO ONTHMAaJ/bHOE pelleHHe IS COLUATbHOIO U SKOHOMHUECKOr0 KPUTEPHEB NPH H3-
MeHEeHHH OI0I2KEeTOB SIBJISIETCS YCTOHUMBBIM; OOJBLUIMHCTBO MapaMeTPOB ONTHMAJbHOIO PelleHHs
c1ab0 3MACTUYHBI OTHOCHTENBHO PACCMOTPEHHBIX 3HAUEHHH MepeMeHHbIX; lapaMeTphbl ONTHMAJbHOTO
pelleHHs MPH HCIOJIb30BAHHH SKOHOMHUYECKOTO KPUTEpPHUsi OoJsiee MOABEp:KEeHbl HU3MEeHEHHI0, YeM
MPY UCIOJIb30BAaHUH COLIMAJNBHOTO KPUTEPHS; XapaKTep U3MeHEeHHs MapaMeTpPOB ONTHMAJbHOTO
pellleHUs1 151 YJIbsSiHOBCKOH obsactu u nasi PO samasiercs cxoxum. Takum obpasom, B pabore
Tnpej/araeTcss HHCTPYMEHT aHaJsi3a SKOHOMHUECKOH Tpo6JeMbl B YCJIOBHSX MacCOBOr0 3a0oJsieBaHuUs,
TMOATBEPKAaeTCsl IPUMEHUMOCTb HHCTPYMEHTA /15 [IOUCKA ONTHMAJbHBIX CTpPaTerni ylpaBJ/eHUs B
pa3JHUHBIX SKOHOMHUYECKHUX CHCTeMaX.
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Introduction

The globalization of economy and growth of the world population lead to the fact
that mass diseases have an impact on all aspects of society. In particular, they affect the
social sphere, since morbidity increases negative processes in society and in some cases
can lead to a reduction in the population [1]. In addition, changes are taking place in the
economic sphere: with the introduction of restrictive measures to prevent the growth
of morbidity, the business activity of economic entities decreases, labor productivity
decreases [2]. Under the current conditions, a governing body of an economic system
faces a number of tasks related to the need to minimize negative effects of a mass disease.
Such tasks include: determining the amount of expenses for hospitalization of patients
and providing them with medical care, informing citizens about the disease and ways to
combat it, making a decision on the introduction of restrictive measures [3]. For their
effective solution, a tool is needed to quantify the impact of the disease on socio-economic
factors and determine a management strategy in conditions mentioned above. An example
of a mass disease affecting the economy of the whole world is the COVID-19 pandemic.
Due to the speed of the spread of the disease, it became necessary to promptly make
decisions on the allocation of resources for health and social support, and on the need to
introduce restrictive measures. As an effective tool for implementing these actions, a
mathematical model describing this situation can act. In current publications devoted
to modeling the dynamics of mass diseases [4-12], the socio-biological aspect of the
epidemic is taken into account (SIR or SEIR-type compartmentalization models are used).
But it is also important to hold the accompanying analysis of economic indicators which
are closely interconnected with socio-biological factors. In particular, [6] emphasizes the
need for quantitative assessments of the interconnection of a pandemic with economy
and healthcare in order to build strategies for managing them. Therefore, a model
should describe the intersection of biosocial environment, economy and healthcare, allow
predicting the dynamics of mass diseases and determining optimal strategies for their
containment.

1. Mathematical model

This paper presents the development of the model proposed in [13, 14].

Considering the biological aspect of the impact of a mass disease, the population (N,
people) of a region is divided into the following groups:

P — persons who comply with restrictive measures (for example, self-isolation) and
thereby minimize the risk of infection for themselves;

S —persons who do not comply with restrictive measures and, therefore, are
potentially susceptible to infection;

E —infected persons who have the disease in the incubation stage;

I —ill persons (persons with both an asymptomatic and symptomatic forms of a
disease are taken into account);

() —ill persons, who are hospitalized;

R — recovered;

D — deceased.

The socio-economic aspect is described by the following indicators:

Y — gross output (RUB);

7w — profit of an economic entity (RUB);

K — cost of fixed assets of an economic entity (RUB);
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L — amount of productive labour (persons);

Z — a number of beds in hospitals to accommodate the ill (units).

In addition, investments in the implementation of the control actions of the authorities
are considered:

u; — investments in the re-equipment of existing beds for the accommodation of the
ill (RUB);

us — investments in increasing the number of beds due to the construction of new
hospitals (RUB);

usz — investments in an information campaign to combat the disease (RUB),
as well as moments of managerial decision-making:

71 —a moment when governing bodies introduce restrictive measures;

75 — a moment when the restrictions are lifted.

The effect of management decisions can be described as follows:

if t =7, then S(t) = (1 —a)S(t), P(t) = P(t) + aS(t);

if t =7, then S(t) = S(t) +bP(t), P(t) = (1 —b)P(t);
where a is the share of the group “persons potentially susceptible to infection”, which
passes into the group “persons who comply with restrictive measures” at 7; b is the
share of the group “persons who comply with restrictive measures”, which passes into
the group “persons potentially susceptible to infection” at 7.

The mathematical model of control over an economic entity in conditions of mass
diseases is formulated below as a system of differential and algebraic relations.

Dynamics of the number of persons potentially susceptible to infection:

% = kpsP(t) + krsR(t —7) — (kSE (%) + ksp(Us(t)) — P) S(), (1)
where p is natural population growth as a percentage of the total population; 7 is
the time during which the immunity of the recovered remains; kgp is the intensity of
the transition of persons at risk of infection to the group of those, who comply with
restrictive measures; kgp is the intensity of the transition of persons at risk of infection
to the group of the infected in the incubation period; krs is the intensity of repeated
morbidity; kpg is the intensity with which persons drop out of the number of those who
comply with restrictive measures.

In general, kgp is a function of the ratio of the number of cases to the total population,
and kgp is a function of the amount of investment in the information campaign. Then
the dynamics of the number of persons complying with restrictive measures can be
represented as:

dpP
i ksp(Us(t))S(t) — kpsP(t). (2)
Increase in the number of infected persons with the incubation stage of the disease:
dE I(t)
B —~ — 3
o ks () 86) ~ ki () ®

where kg is the intensity of the transition of infected persons with the incubation stage
of the disease into the group of the ill.
Change in the number of cases:

dl
a = /{ZE[E(t> — (]CIQ + ]C[R + /{Z[D)I(t), (4)
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where kjq is the intensity of hospitalization of the ill; k;x is the intensity of recovery of
non-hospitalized patients; k;p is the mortality rate of non-hospitalized patients.
Dynamics of hospitalization:

dq)

i kigI(t) — (koo + kqr)Q(t), (5)
where kgp is the mortality rate of the hospitalized ill persons; kgr is the recovery rate
of the hospitalized ill persons.

Increase in the number of the recovered:

dR

— = kirl () + korQ(t) — krsR(). (6)

Change in the number of the deceased:

dD

pa kopQ(t) + krpl(t). (7)

Change in the number of beds to accommodate the ill:

dz

o = g(ua(t — 7)) — pZ(t) + kuy (1), (8)

where g(us) is a function that matches investments in the construction of new hospitals

with an increase in the number of beds; 7 is the time of implementation of investments;

i is the depreciation of hospital funds; k is the parameter that determines the ratio of the

number of beds converted to accommodate patients and investments in the conversion.
Population of a region:

N(t)=P(t)+S(t)+ E(t)+ I(t) + Q(t) + R(t). 9)
General amount of effective labour:
L(t) = s1P(t) + s25(t) + ssE(t) + s4R(t). (10)

where s, = e - m, k = 1,4; m is the share of the working-age population of the total
population; e; is the labor efficiency coefficient of a healthy person who complies with
restrictive measures and works remotely; es is the labor efficiency coefficient of a healthy
person working full-time; e; is the labor efficiency coefficient of a person whose disease
is in the incubation stage; e, is the labor efficiency coefficient of a recovered person
working full-time. Thus, s, k = 1,4, is the share of investments of the productive labour
of persons from the corresponding groups.
The value of the gross output of an economic entity:

Y(t) = F(K(), L)), (11)

where K is the cost of fixed assets of an economic entity; L is the volume of productive
labour. Note that the value of L(t), according to (10), takes into account the influence of
a mass disease. Thus, it is indirectly contained in the value of gross output (V).

Profit of a region:

7(t) = Y(t) — wr(t) — us(t) — us(t). (12)

268 Hay4Hbii otgen



I. V. Lutoshkin, M. S. Rybina. Optimal solution in the model of control over an economic system @

Gross output depends on the biosocial effect of a mass disease, therefore, profit also
indirectly takes this effect into account.
The volume of investments is assumed to be limited:

T

to

where Bj is the amount of the budget the conversion of existing beds; B, is the amount
of the budget for construction of new hospitals; Bs is the amount of the budget for an
information campaign to combat mass disease.

[t is assumed that the number of hospitalized does not exceed the number of beds:

Qt) < Z(1). (14)

To select a control strategy, it is necessary to introduce a criterion that allows
determining the best item from a set of control strategies [15-19]. We introduce a
functional that contains a combination of criteria: economic (maximizing cumulative
relative profit) and social (minimizing the number of cases):

/Tmﬂ(t)—aﬂ(t))dm max | (15)

to U1,U2,U3,T1,T2

where o and a4 are share parameters whose values should be determined by experts. The
system (1)—(14) in combination with the quality criterion (15) is a problem of optimal
control with a delay. Its solution requires the use of specialized numerical methods, for
example, considered in [20,21].

2. Numerical experiment

To find the optimal solution, estimates of the parameters of the model (1)-(15) are
required. The graduate work by M. S. Rybina “Mathematical modeling of optimal control
over an economic entity in conditions of a mass disease” (Ulyanovsk State University,
2022) provides estimates of parameters for the Russian Federation and the Ulyanovsk
region based on data on the COVID-19 pandemic in 2020 (Table 1). There were also
estimates of functional dependencies between the model parameters (Table 2) and based
on the proposed model, the optimal control parameters for the economies of the Russian
Federation and the Ulyanovsk region.

To find optimal solutions, the authors’ software package and algorithms considered
in [20] were used. Parameterization method was used to find the solution of the problem
(1)—(15) in the class of piecewise constant controls u;(t) = ¢;, 1 <i < 3, t € [ty; T]. Here
¢; are constant values, 1 <7 < 3.

Numerical experiment was held using the data obtained in the condition of absence of
vaccination. The beginning of the pandemic in Russia in the middle of March 2020 was
the initial point, while the final point was December 2020. Thus, the planning period
considered in the problem is ¢, =0, T'= 9.5.

Tables 3 and 4 present the optimal values of the control parameters corresponding to
allocated budgets. Each budget was varied by 1% and £10%, other things being equal.
The parameters of optimal solutions were compared with the corresponding parameters
calculated in the absence of budget variation.
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Table 1
Estimates of the parameters for the Russian Federation and the Ulyanovsk region
Parameter Region Parameter Region
Russia Ulyanovsk Russia Ulyanovsk
region region
a 0.415 0.416 b 0.271 0.377
1 0.174 0.122 o 1.845-10~1 | 2.0975 - 10~
kps 0.64 0.5 kgp 0.1 0.13
krs 0.0002 0.0002 krr 2.8 2.36
kor 2.0 2.8 krp 0 0
k 3.415-107° [ 2.719- 1076 m 0.482 0.467
el 0.879 0.879 €9 1 1
es 0.43 0.43 €4 1 1
L 8.33-1073 | 8.33.1073 ) —9.516-10~° | —3.636- 103
Table 2
Estimates of parameter functions for the Russian Federation
and the Ulyanovsk region
Parameter Region
function Russia Ulyanovsk region
ksg(1) 1.11-107"1 7.7-10751
ksp(us) 0.174 4+ 1.845 - 10 Mug | 0.122 +2.097 - 10 3ug
g(u2) 1.381 - 10 Tug 0
F(K, L) 747 - 10_5K0‘4387L1'3667 28.228K0'3815L0'5728
K(t) 3.4973 - 101400102 1.256128 - 10120-01178¢
Table 3
Optimal control parameters for the Russian Federation
Functional | Budget value Uy, U9, us, T, T,
coefficients change RUB RUB RUB months | months
ap =1, - 7153989000 | 2521637000 | 43737850 | 0.896 2.029
az =0 0.9B; 6919106000 | 2712544000 | 47096230 | 0.834 2.180
(economic 0.9B5 7153989000 | 2280855000 | 43957200 | 0.893 2.034
criterion) 0.9B3 7161150000 | 2526688000 | 39482390 | 0.894 2.034
1.1B, 7381289000 | 2367600000 | 41148330 | 0.953 1.908
1.1B, 7146835000 | 2776578000 | 43781630 | 0.897 2.027
1.1B3 7139688000 | 2524162000 | 48183900 | 0.896 2.028
0.99B8; 7125093000 | 2544446000 | 44177640 | 0.889 2.047
0.99B> 7153989000 | 2498920000 | 43781630 | 0.896 2.030
0.99B3 7153989000 | 2526688000 | 43430630 | 0.896 2.030
1.01B, 7175102000 | 2506545000 | 43497840 | 0.901 2.017
1.01B2 7146835000 | 2549403000 | 43825460 | 0.894 2.032
1.01B;3 7146835000 | 2529218000 | 44308020 | 0.894 2.032
ay; =0, - 8463473000 | 3031374000 | 52842080 | 0.000 9.500
ag =1 0.9B8; 7617126000 | 3031374000 | 52842080 | 0.000 9.500
(social 0.9B5 8463473000 | 2728237000 | 52842080 | 0.000 9.500
criterion) 0.9B3 8463473000 | 3031374000 | 47557870 | 0.000 9.500
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Continuation of Table 3

Functional | Budget value uq, ug, us, T1, T2,
coefficients change RUB RUB RUB months | months
a; =0, 1.1B; 9309820000 | 3031374000 | 52842080 | 0.000 9.500
as =1 1.1Bs 8463473000 | 3334511000 | 52842080 | 0.000 9.500
(social 1.1B3 8463473000 | 3031374000 | 58126290 | 0.000 9.500
criterion) 0.99B; 8378838000 | 3031374000 | 52842080 | 0.000 9.500

0.99B5 8463473000 | 3001060000 | 52842080 | 0.000 9.500
0.99B3 8463473000 | 3031374000 | 52313660 | 0.000 9.500
1.01B; 8548108000 | 3031374000 | 52842080 | 0.000 9.500
1.01By 8463473000 | 3061688000 | 52842080 | 0.000 9.500
1.01Bs 8463473000 | 3031374000 | 53370500 | 0.000 9.500
Table 4
Optimal control parameters for the Ulyanovsk region
Functional | Budget value uq, us, T1, T2,
coefficients change RUB RUB months | months
a; =1, - 1302991 | 43215870 | 1.068 1.691
ag =0 0.9B; 1246425 | 45979050 | 1.003 1.795
(economic 0.9B5 1304295 | 38933220 | 1.065 1.693
criterion) 1.1B; 1357908 | 41066070 | 1.126 1.604
1.1B3 1300386 | 47632680 | 1.068 1.690
0.99B; 1296430 | 43606770 | 1.060 1.702
0.99B3 1302991 | 42869410 | 1.067 1.691
1.01B; 1308145 | 43000220 | 1.073 1.682
1.01Bs 1302991 | 43735460 | 1.068 1.690
a1 =0, - 1578947 | 52842106 | 0.000 9.500
ag =1 0.9B; 1421052 | 52842060 | 0.000 9.500
(social 0.9Bs 1578947 | 47557850 | 0.000 9.500
criterion) 1.1By 1736842 | 52842060 | 0.000 9.500
1.1B3 1578947 | 58126260 | 0.000 9.500
0.99B; 1563158 | 52842060 | 0.000 9.500
0.99B3 1578947 | 52313640 | 0.000 9.500
1.01B; 1594736 | 52842060 | 0.000 9.500
1.01Bs 1578947 | 53370480 | 0.000 9.500

The analysis of the values in Tables 3 and 4 shows that:

1. The optimal solution for social and economic criteria when changing budgets is
sustainable. If the budget changes by 1% (10%), the optimal parameter values change by
less than 1% (10%). This means that the vast majority of the parameters of the optimal
solution are weakly elastic.

2. The parameters of the optimal solution when using the economic criterion are
more susceptible to change than when using the social criterion.

3. The change in the parameters of the optimal solution for both the Ulyanovsk region
and the Russian Federation is common. In other words, there is a similar effect of the
variables’ values on the optimal strategies for economic entities of a different scale and
complexity. Consequently, the applicability of the model for such subjects is confirmed.
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Conclusion

The paper proposes a mathematical model as a tool for determining optimal control
strategies over an economic entity in conditions of mass diseases. The model includes
socio-biological and economic factors, as well as control measures.

Based on the modification of the parametrization method developed by the authors,
optimal control strategies over an economy in conditions of mass disease were determined
for the Russian Federation and the Ulyanovsk region. A numerical experiment aimed
at studying the stability of the parameters of the optimal solution with variation in the
values of budgets was held. As a result, it was shown that the parameters of the optimal
solution are stable and change in a similar way for the considered economic entities.
This confirms the possibility of using the model for economic entities of various scales
and complexity.

Further development of the study includes supplementing the model with a vaccination
factor, as well as finding and analyzing optimal solutions for non-zero values of both
coefficients of the target functional.
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