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Аннотация. Подбор параметров синтеза прекурсоров катодных материалов состава NCM является одним из превалирующих факто-
ров, оказывающих существенное влияние на химический состав, насыпную плотность, микроструктуру поверхности, электрохимиче-
ские характеристики и ресурс получаемых впоследствии катодных материалов. В данной работе исследуется варьирование скорости 
перемешивания, pH, концентрации комплексообразующего агента, мольное соотношение концентраций NH3/р-р сульфатов. Точный 
контроль в процессе соосаждения сульфатов переходных металлов позволил получить материал с улучшенными физико-химическими 
характеристиками в реакторе периодического действия. 
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Введение

Производство как самих литий-ионных ак-
кумуляторов (ЛИА), так и компонентов для из-
готовления ЛИА является одной из самых стре-
мительно растущих и быстро развивающихся 
отраслей промышленности [1]. К сегодняшнему 
времени, начиная с момента коммерциализации 
в начале 1990-х гг., был достигнут огромный 
прогресс в повышении функциональных харак-
теристик литий-ионных аккумуляторов, таких 
как ёмкость, удельная мощность, срок службы 
и безопасность [2]. Значительную часть этого 
прогресса можно отнести к постоянному вне-
дрению и усовершенствованию материалов, из 
всех составляющих компонентов ЛИА катод-
ный материал (САМ) оказывает наибольшее 
влияние на характеристики аккумуляторов, 
поэтому он играет решающую роль в развитии 
отрасли литий-ионных технологий.

На данный момент разработано и внедрено 
в производство несколько типов катодных ма-
териалов, среди которых: фосфат лития-железа 
(LiFePO4, LFP), оксид лития-кобальта (LiCoO2, 
LCO), оксид лития-марганца (LiMn2O4, LMO), 
литий-никель -кобальт -алюминий-оксид 
(LiNi1-x-yCoxAlyO2, NCA) и литий-никель-
марганец-кобальт-оксид (LiNi1-x-yMnxCoyO2, 
NCM). Из-за синергетического эффекта Ni, Co, 
Mn катодные материалы типа NCM являются 
одной из наиболее успешных комбинаций, 
обеспечивающих высокую плотность энергии, 
эффективность заряда/разряда, длительность 
срока службы и др. Еще одним из важных 
преимуществ САМ на основе NCM является 
возможность варьирования (в широких преде-
лах) состава за счет изменения соотношения 

Ni:Mn:Co, что позволяет создавать материалы 
для применения в конкретных областях и на-
правлениях. 

Для получения САМ адаптировано боль-
шое количество методов синтеза, среди кото-
рых: твердофазный, золь-гель, темплатный и 
гидротермальный синтез, распылительный 
пиролиз [3–6], однако одним из наиболее высо-
копроизводительных и широко используемых 
методов является соосаждение с последующим 
литирующим обжигом в атмосфере кислорода. В 
настоящее время до сих пор ведутся исследова-
ния по получению частиц катодных материалов 
различной формы и размеров (от нанометровых 
листов и даже точек до агломератов микронных 
размеров), однако в промышленности наиболее 
часто получают вторичные частицы сфериче-
ской или приближенной к сферической форме 
с широким распределением по размерам (от 3 
до 30 мкм) в зависимости от целей и области 
применения конечного аккумулятора.

Последние исследования и опыт про-
мышленных производств подтверждают, что 
микроструктура поликристаллических САМ 
в значительной степени формируется на этапе 
синтеза предшественника катодного материала 
(pСАМ), то есть Ni1-x-yMnxCoy(OH)2, и оказыва-
ет существенное влияние на функциональные 
характеристики катодного материала. В процес-
се соосаждения к факторам, которые могут вли-
ять на состав и морфологию частиц, относятся: 
значение pH, концентрация аммиака, темпера-
тура и время реакции, скорость перемешивания 
и др., таким образом, установление влияния и 
уточнение параметров соосаждения являются 
важным звеном при разработке материалов с за-
данными функциональными характеристиками.
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Целью исследования является экспери-
ментальная оценка влияния варьируемых 
параметров: рН, скорость перемешивания, 
концентрация аммиака и соотношения аммиак/
сульфаты на структуру и характеристики pСАМ 
типа NCM811.

Материалы и методы

Синтез прекурсора катодного материала 
pСАМ был получен методом соосажде-

ния в реакторе периодического действия без 
отражательных перегородок, объем реактора 
10 дм3. В качестве исходных реагентов ис-
пользовали NiSO4·6H2O (Nornickel Harjavalta), 

CoSO4·7H2O (Nornickel Harjavalta), MnSO4· H2O 
(Merck), гидроксид натрия (АО «ЭКОС-1») и 
гидроксид аммония (ООО «Сигма Тек») в каче-
стве комплексообразующего агента. Молярное 
соотношение переходных металлов составило 
Ni : Co : Mn = 8 : 1 : 1. При проведении исследо-
ваний варьировали следующие параметры: pH, 
концентрацию комплексообразователя, соот-
ношение гидроксид аммония и скорость пере-
мешивания, условия синтеза представлены в 
табл. 1. Концентрация смеси сульфатов пере-
ходных металлов, скорости подачи, температура 
и время реакции соосаждения были выбраны в 
качестве постоянных параметров и не варьиро-
вались в рамках данного исследования.

Таблица 1 / Table 1
Условия синтеза прекурсора Ni0.8Co0.1Mn0.1(OH)2 

Conditions for the synthesis of the precursor Ni0.8Co0.1Mn0.1(OH)2

Образец /
Sample

Скорость 
перемешивания, об/мин /

Mixing speed, rev/min
pH

CM NH3, 
моль/л /

mol/l

Соотношение NH3/р-р сульфатов, 
моль/моль / 

Ratio of NH3/sulphate solution, mol/mol

Диапазон / 
Range of variation 300–500 10.8–11.4 4–13.32 1.6–2.1

P-2 300 11.0 13.32 1.6
P-3 400 11.0 13.32 1.6
P-4 450 11.0 13.32 1.6
P-5 500 11.0 13.32 1.6
Р-6 450 10.8 13.32 1.6
Р-7 450 11.0 13.32 1.6
Р-8 450 11.2 13.32 1.6
Р-9 450 11.4 13.32 1.6
Р-10 450 11.0 4.00 1.6
Р-11 450 11.0 6.00 1.6
P-4 450 11.0 13.32 1.6
Р-12 450 11.0 6.00 1.6
Р-13 450 11.0 6.00 1.8
Р-14 450 11.0 6.00 2.0
Р-15 450 11.0 6.00 2.1

Исследование физико-химических 
характеристик
Рентгенофазовый анализ осуществлялся 

посредством использования многофункцио-
нального рентгеновского дифрактометра ДРОН-
8 (АО «ИЦ «Буревестник») с применением рент-
геновской трубки типа 1,5 БСВ-29Cu. Условия 
съёмки: напряжение – 40 кВ, анодный ток – 
20 мА, температура – 24°С, диапазон углов – 
4–100°, шаг – 0.2°, экспозиция – 5 с. Морфология 
поверхности исследована методом растровой 
электронной микроскопии (сканирующий 

двулучевой электронно-ионный микроскоп 
LYRA3 GMH, TESCAN), распределение ча-
стиц по размерам определялось методом ла-
зерной дифракции (ANALYSETTE 22 NeXT, 
FRITSCH). Насыпная плотность (НП) порош-
ков после утряски была определена на приборе 
ETD-1020x (Electrolab). Химический состав 
реагентов и всех продуктов исследовался мето-
дом атомно-эмиссионной спектрометрии с ин-
дуктивно связанной плазмой на спектрометре 
с индуктивно-связанной плазмой (ИСП-АЭС) 
EXPEC 6500. 
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Результаты и их обсуждение

Поскольку варьирование различных па-
раметров синтеза не должно было оказывать 
существенного влияния на фазовый состав 
получаемых прекурсоров вследствие единой 
химической природы процесса, полученные 
данные рентгеновской дифракции близки для 
всех полученных образцов. На рис. 1 приведены 
рентгеновские дифрактограммы для образцов, 
полученных при варьировании различных пара-
метров: pH раствора в реакторе, концентрации 

раствора аммиака и соотношения концентраций 
аммиака и смеси сульфатов. Видно, что все по-
лученные материалы демонстрируют идентич-
ную дифрактограмму, которая соответствует 
Ni(OH)2 (ICCD № 00-059-0463), при этом наблю-
дается незначительное смещение максимумов 
в положениях (0,0,1), (0,1,1) и (0,1,2) в сторону 
меньших углов, что говорит о присутствии 
ионов других металлов (кобальта, марганца) в 
решётке гидроксида. Незначительные ушире-
ния пиков могут быть следствием присутствия 
следовых количеств гетерогенита CoOOH.

Рис. 1. Дифрактограммы образцов, полученных при варьировании различных 
условий синтеза: значения pH раствора (Р-7), концентрации аммиака (Р-10) 

и соотношения NH3/р-р сульфатов (Р-12)
Fig. 1. X-ray diffraction patterns of samples obtained with varying of different 
synthesis conditions: pH solution value (P-7), ammonia solution concentration (P-10) 

and different ratios of NH3/solution of sulfates (P-12)
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Таким образом, основное влияние из-
менение условий синтеза будет оказывать на 
морфологию получаемых вторичных частиц и 
на их распределение по размерам.

Влияние скорости перемешивания 
Интенсивное перемешивание в процессе 

соосаждения способствует более быстрому 
распределению ионов металлов и позволяет 
избежать избыточной локальной концентрации 
компонентов, что, в свою очередь, способству-
ет образованию гомогенных по химическому 
составу частиц. Выбор оптимальной скорости 
перемешивания позволяет получить игольчатые 
частицы, толщиной 1–2 нм, которые в дальней-
шем упаковываются в плотную гладкую сферу 
вторичных частиц [7]. Для таких частиц харак-
терно высокое значение насыпной плотности 
после утряски (≥1.5 г/см3), что необходимо для 

получения рСАМ с заданными характеристика-
ми и достижения высоких электрохимических 
показателей катодного материала.

Экспериментально было проверено вли-
яние скорости перемешивания в диапазоне 
300–500 об/мин, результаты распределения 
частиц по размерам (табл. 2, рис. 2, 3) пока-
зывают, что наблюдается четкая корреляция 
между увеличением скорости перемешивания 
и уменьшением размера частиц (D10, D50, D90), 
в то же время, согласно результатам сканиру-
ющей электронной микроскопии, увеличение 
скорости перемешивания приводит к образо-
ванию частиц с более регулярной сферичной 
морфологией и более узкому распределению 
частиц по размерам, что коррелирует с резуль-
татами насыпной плотности после утряски 
(см. табл. 2).
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Таблица 2 / Table 2
Результаты исследований прекурсоров

 The results of precursor studies

Образец /
Sample

Параметры синтеза / Synthesis parameters Распределение частиц по размерам, мкм / 
Particle size distribution, microns НП / 

Tap 
density

pH CM NH3, 
mol/l

Скорость перемешивания, 
об/мин / 

Mixing speed, rev/min
D10 D50 D90

Р-2 

11.0 13.32

300 6.2 ± 0.4 13.4 ± 0.1 25.6 ± 0.3 1.45

Р-3 400 5.7 ± 0.5 11.4 ± 0.1 19.2 ± 0.1 1.66

Р-4 450 5.9 ± 0.4 10.4 ± 0.2 16.9 ± 0.2 1.68

Р-5 500 4.6 ± 0.3 8.4 ± 0.1 13.9 ± 0.2 1.72

Таким образом, на основании полученных 
результатов оптимальная скорость вращения 
одноуровневой мешалки пропеллерного типа 
для реактора периодического действия без от-
ражательных перегородок объемом 10 дм3 была 
определена на уровне 450 об/мин. При этом важ-

но отметить, что увеличение скорости переме-
шивания выше указанного значения приводит к 
получению вторичных частиц с более плотной 
морфологией, что, в свою очередь, может ока-
зать негативное влияние на электрохимические 
характеристики катодного материала.

Рис. 2. Микрофотографии рСАМ, полученные при разных скоростях перемешивания, 
об/мин: Р-2 – 300, Р-3 – 400, Р-4 – 450, Р-5 – 500

Fig. 2. рCAM micrographs obtained at different mixing speeds, rpm: P-2 – 300, P-3 – 400, 
P-4 – 450, P-5 – 500

А. А. Коржаков и др. Исследование влияния параметров процесса соосаждения 
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Рис. 3. Результаты исследования распределения частиц 
по размерам материалов, полученных в различных 
условиях, об/мин: Р-2 – 300, Р-4 – 400, Р-5 – 450, Р-3 – 

500 (цвет онлайн)
Fig. 3. Results of a study of particle size distribution of 
materials obtained under various conditions, rpm: P-2 – 300, 

P-4 – 400, P-5 – 450, P-3 – 500 (color online)

Влияние значения pH
Значение pH реакции соосаждения является 

одним из наиболее важных параметров, влия-
ющих на образование, рост и свойства pСАМ. 
В данном исследовании был выбран диапазон 
pH между 10.8 и 11.4 (табл. 3).

Низкие значения pH не обеспечивают 
полноты осаждения переходных металлов [8], 
нарушая стехиометрию получаемого материала 
(см. табл. 3), в то же время с ростом значения 
рН, в связи с увеличением концентрации OH-
анионов, увеличивается скорость зародыше-

Таблица 3 / Table 3 
Условия проведения синтеза, результаты анализа химического состава и распределения частиц 

по размерам получаемых pСАМ
Synthesis conditions, results of analysis of the chemical composition and particle size distribution 

of the obtained pСАМ

Образец /
Sample pH

% (масс.) /
% (mass.)

Соотношение, % /
Ratio, %

Распределение частиц по размерам, мкм /
Particle size distribution, microns

Ni Co Mn Ni Co Mn D10 D50 D90

Р-6 10.8 45.50 5.85 7.34 76.90 9.85 13.25 2.0 ± 0.1 5.8 ± 0.2 16.0 ± 3.1

Р-7 11.0 48.70 6.73 5.85 78.99 10.87 10.14 6.9 ± 0.1 11.4 ± 0.1 17.6 ± 0.1

Р-8 11.2 46.80 6.64 8.06 75.45 11.18 14.55 5.2 ± 0.1 8.8 ± 0.0 13.9 ± 0.1

Р-9 11.4 48.60 6.74 5.85 78.94 10.90 10.15 8.3 ± 0.1 14.4 ± 0.1 22.8 ± 0.1

образования и роста кристаллов, при этом 
размер первичных частиц становится меньше. 
Существует максимально допустимое значение 
рН, выше него в реакции будет преобладать 
зародышеобразование. При мгновенном об-
разовании большого количества зародышей 
образовываются дополнительные нерегулярные 
скопления, что приводит к чрезмерной агло-
мерации и плохой сферичности гидроксида в 
процессе последующего роста (рис. 4).

Согласно микрофотографиям (см. рис. 4) 
прослеживается различие структуры и фор-
мы получаемых pСАМ. При значении pH 11.4 
наблюдается сильная агрегация зародышей 
с формированием частиц неровной формы – 
отчетливо видны стыки слипания агрегатов. 
При pH 11.0 морфология вторичных частиц 
характеризуется более сферичной формой, не-
плотной укладкой первичных частиц. При таком 
значении возможно достичь геометрическую 
симметрию получаемого материала, что в даль-
нейшем положительно скажется при литирова-
нии материала и, как результат, на ключевых 
характеристиках катодного материала.

Влияние концентрации комплексообразую-
щего агента

Произведения растворимости Ni(OH)2, 
Co(OH)2 и Mn(OH)2 равны 2.0·10-15 (25°С), 
1.9·10-15 (25°С) и 1.6·10-13 (25°С) соответственно, 
это означает, что указанные соединения имеют 
низкую растворимость и высокую скорость 
седиментации, при этом для Mn(OH)2 скорость 
осаждения более медленная, чем для Ni(OH)2, 
Co(OH)2, все это приводит к неоднородному 
осаждению гидроксидов и образованию коллои-
дов, что не позволяет контролировать морфоло-
гию образующихся осадков и негативно сказы-
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вается на характеристиках САМ [9]. Однако при 
использовании комплексообразующего агента 
(NH3·H2O) за счет образования комплексных 
соединений переходных металлов реакция 
осаждения протекает более «равномерно» и сни-
жается скорость зародышеобразования в начале 
реакции, что позволяет достичь более высокой 
ориентации и степени кристаллизации осадков.

Условия проведения синтеза, а также ре-
зультаты распределения частиц по размерам 

представлены в табл. 4. Наименьшей начальной 
концентрацией NH3 выбрано значение 4 моль/л 
на основании наших предыдущих исследо-
ваний, так как при концентрации ниже этого 
значения образуются сферические частицы с 
нерегулярной и сложно контролируемой мор-
фологией. Согласно результатам микроскопии 
(рис. 5) было обнаружено, что основу всех вто-
ричных частиц полученных образцов составля-
ют первичные наноразмерные пластины. Формы 

Рис. 4. Микрофотографии pСАМ, полученные при pH реакции: Р-6 – 10.8, Р-7 – 
11.0, Р-8 – 11.2, Р-9 – 11.4

Fig. 4. pCAM micrographs obtained with the pH of the reaction: P-6 – 10.8, P-7 – 11.0, 
P-8 – 11.2, P-9 – 11.4

Таблица 4 / Table 4
Условия проведения синтеза, результаты распределения частиц по размерам получаемых pСАМ

Synthesis conditions, results of particle size distribution of the resulting pCAM

Образец /
Sample

Параметры синтеза / Synthesis parameters Распределение частиц по размерам, мкм /
Particle size distribution, microns

pH CM NH3, моль/л / mol/l D10 D50 D90

Р-10

11.0

4.00 8.0 ± 0.1 12.6 ± 0.1 19.3 ± 0.1

Р-11 6.00 7.7 ± 0.1 12.2 ± 0.1 18.3 ± 0.2

Р-4 13.32 5.9 ± 0.4 10.4 ± 0.2 16.9 ± 0.2

А. А. Коржаков и др. Исследование влияния параметров процесса соосаждения 
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Таблица 5 / Table 5 
Условия проведения синтеза, результаты распределения частиц по размерам получаемых pСАМ

Synthesis conditions, results of particle size distribution of the resulting pCAM

Образец / 
Sample

Соотношение 
NH3/р-р сульфатов, 

моль/моль  /
NH3/sulfate solution 

ratio, mol/mol

% (масс.) / 
% (mass.)

Соотношение, %
Ratio, %

Распределение частиц 
по размерам, мкм /

Particle size distribution, microns

Ni Co Mn Ni Co Mn D10 D50 D90

Р-12 1.6 50.30 6.21 5.58 80.55 9.90 9.55 7.7 ± 0.1 12.5 ± 0.1 19.0 ± 0.1

Р-13 1.8 48.90 6.46 5.92 79.31 10.43 10.26 7.0 ± 0.1 11.2 ± 0.1 17.0 ± 0.1

Р-14 2.0 52.20 7.04 5.85 79.74 10.71 9.55 7.8 ± 0.2 12.4 ± 0.1 18.9 ± 0.1

Р-15 2.1 49.50 6.78 5.95 79.06 10.79 10.15 6.9 ± 0.2 11.3 ± 0.1 17.3 ± 0.1

частиц идентичные, распределение частиц по 
размеру равномерное. По мере увеличения кон-
центрации аммиака границы первичных частиц 
становятся более выраженными и плотноупа-
кованными. Подобная вторичная структура со-
храняется после высокотемпературного обжига. 

Изменение концентрации подаваемого ам-
миака в процессе синтеза pCAM не оказывает 
существенного влияния на среднюю крупность 

получаемых частиц. Среднеквадратичное от-
клонение достаточно узкое, а размер частиц D50 
на уровне 12.2 мкм (см. табл. 4).

Мольное отношение аммиак/сульфаты 
переходных металлов

В табл. 5 представлены условия синтеза 
материалов Р-12 – Р-15, результаты анализа 
химического состава, а также распределение 
полученных частиц по размерам.

Рис. 5. Микрофотографии рСАМ, полученные при различной концентрации ком-
плексообразующего агента, моль/л: Р-10 – 4, Р-11 – 6, Р-4 – 13,32

Fig. 5. рCAM micrographs obtained at different concentrations of the complexing agent, 
mol/l: P-10 – 4, P-11 – 6, P-4 – 13.32

Согласно данным элементного состава 
анализируемых проб (см. табл. 5) можно 
сделать вывод, что наиболее равномерный 
процесс соосаждения основных металлов про-
исходит при соотношении МNH3/МMe ~ 1.6. 
Увеличение соотношения приводит к связы-
ванию никеля, параллельно процессу соосаж-
дения комплекса.

Правильный подбор параметра мольного 
соотношения влияет на структуру первичных 
и форму вторичных частиц. Исходя из микро-
фотографий можно сделать вывод, что наиболее 
пористыми, вытянутыми и сферичными полу-

чились частицы при соотношении ~ 1.6. Данная 
форма является предпочтительной, поскольку 
она обеспечивает высокую удельную площадь 
поверхности, что улучшает кинетику последу-
ющей твердофазной реакции.

При более высоких соотношениях (2.1) 
получаются плотные частицы с мелкими кри-
сталлитами. Форма самих частиц не зависит от 
исследуемого параметра (рис. 6). 

Данные по распределению частиц по раз-
мерам представлены в табл. 5, гистограмма 
распределения имеет узкий пик на уровне 
10–12 мкм.
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Рис. 6. Микрофотографии образцов, полученные при различном соотношении NH3/р-р 
сульфатов, моль/моль: Р-12 – 1.6, Р-13 – 1.8, Р-14 – 2.0, Р-15 – 2.1

Fig. 6. Micrographs of samples obtained with different ratios of NH3/solution of sulfates, 
mol/mol: P-12 – 1.6, P-13 – 1.8, P-14 – 2.0, P-15 – 2.1

Заключение

Прекурсоры катодного материала состава 
NCM811 были синтезированы в реакторе пе-
риодического режима методом совместного 
соосаждения. Проведено исследование полу-
ченных образцов современными физико-хи-
мическими методами анализа. На основании 
вышеописанных результатов установлено, 
что оптимальными ключевыми параметрами 
синтеза pСАМ типа NCM811 являются: pH – 
11.0, концентрация комплексообразующего 
агента – 13.32 моль/л, соотношение NH3/р-р 
сульфатов – 1.6 моль/моль и скорость переме-
шивания – 450 об/мин. Указанные параметры 
позволяют получать прекурсор катодного 
материала, частицы которого имеют форму, 
наиболее приближенную к сферической со 
средним  (воспроизводящимся) размером 
12 мкм и насыпной плотностью на уровне 1.8. 
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