Analysis for the efficiency of additional dispersed reinforcement using coconut fiber for a concrete beam with traditional steel bar reinforcement

封面

如何引用文章

全文:

详细

Concrete is widely used as a building material throughout the world. However, its use in building structures is limited due to its low tensile strength. This problem can be partially solved using steel bars reinforcement, as well as using dispersed reinforcement with various types of fibers. The authors propose the simultaneous traditional reinforcement of a concrete structure with steel bars with additional dispersed reinforcement with natural coconut fibers, relatively cheap and widely available in many countries in Africa, Asia and Latin America. The purpose of this study is to analyze the effectiveness of the proposed solution by comparing the required amount of steel reinforcement (by weight) for a beam made of traditional concrete and a similar beam with additional dispersed reinforcement with coconut fibers. Deflections and cracking in beams were investigated. The analysis was carried out using Autodesk Robot Structural Analysis Professional 2022 software. The results showed that a beam additionally reinforced with coconut fiber requires 11% less steel reinforcement (by weight) compared to a similar beam made of traditional reinforced concrete. In addition, the coconut fiber reinforced beam experienced 6% less deflection and significantly less stress cracking compared to a simple concrete beam. These results proved that the approach proposed in the work noticeably improves the performance of reinforced concrete in the structure, and also makes it possible to obtain significant savings in reinforcing steel.

作者简介

Peter Chongo

Peoples’ Friendship University of Russia (RUDN University)

Email: pchongo.pc@gmail.com
ORCID iD: 0000-0001-9930-5709

master student, Department of Civil Engineering, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Svetlana Shambina

Peoples’ Friendship University of Russia (RUDN University)

编辑信件的主要联系方式.
Email: shambina_sl@mail.ru
ORCID iD: 0000-0002-9923-176X

Candidate of Technical Sciences, Associate Professor of the Department of Civil Engineering, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Oliver Tembo

Peoples’ Friendship University of Russia (RUDN University)

Email: tembokoli-ver3@gmail.com
ORCID iD: 0000-0001-5795-2932

master student, Department of Civil Engineering, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

参考

  1. Octarina D., Fadilasari D., Juansyah Y. Comparative analysis the addition of natural and artificial fibres in concrete. IOP Conference Series Materials Science and Engineering. 2020;807(1):012002. http://doi.org/10.1088/1757-899X/807/1/012002
  2. Chiadighikaobi P.C. Improving the compressive strength of lightweight cylindrical concrete column with basalt fiber reinforced polymer acting under imposed load. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(5):424-434. http://doi.org/10.22363/1815-5235-2020-16-5-424-434
  3. Markovich A.S., Miloserdova D.A. Properties of dispersed fibers for efficient concrete reinforcement. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(2):182-192. (In Russ.) http://doi.org/10.22363/1815-5235-2022-18-2-182-192
  4. Galishnikova V.V., Heidari A., Chiadighikaobi P.C., Muritala A.A., Emiri D.A. Ductility and flexure of lightweight expanded clay basalt fiber reinforced concrete slab. Structural Mechanics of Engineering Constructions and Buildings. 2021;17(1):74-81. http://doi.org/10.22363/1815-5235-2021-17-1-74-81.
  5. Laverde V., Marin A., Benjumea J., Ortiz M.R. Use of vegetable fibers as reinforcements in cement-matrix composite materials: a review. Construction and Building Materials. 2022;340(1-3):127729. http://doi.org/10.1016/j.conbuildmat.2022.127729
  6. Savastano J.H., Santos S.F., Radonjic M., Soboyejo W.O. Fracture and fatigue of natural fiber-reinforced cementitious composites. Cement and Concrete Composites. 2009;31(4):232-243. https://doi.org/10.1016/j.cemconcomp.2009.02.006
  7. Rassokhin A., Ponomarev A., Shambina S., Karlina A. Different types of basalt fibers for disperse reinforcing of fine-grained concrete. Magazine of Civil Engineering. 2022;(1):10913. http://doi.org/10.34910/MCE.109.13
  8. Amin M.N., Ahmad W., Khan K., Ahmad A. A comprehensive review of types, properties, treatment methods and application of plant fibers in construction and building materials. Materials (Basel). 2022;15(12):4362. http://doi.org/10.3390/ma15124362
  9. Ahmad W., Farooq S.H., Usman M., Khan M., Ahmad A., Aslam F., Yosef R.A., Abduljabbar H.A., Sufian M. Effect of coconut fiber length and content on properties of high strength concrete. Materials (Basel). 2020;13(5):1075. http://doi.org/10.3390/ma13051075
  10. Galishnikova V.V., Kharun M., Koroteev D.D., Chiadighikaobi P.C. Basalt fiber reinforced expanded clay concrete for building structures. Magazine of Civil Engineering. 2021;(1):10107. https://doi.org/10.34910/MCE.101.7
  11. Mokhtari A., Ouali M.O., Tala-Ighil N. Damage modelling in thermoplastic composites reinforced with natural fibres under compressive loading. International Journal of Damage Mechanics. 2015;24:1239-1260. http://doi.org/10.1177/1056789515573900
  12. Hwang C., Tran V., Hsieh Y. Effects of short coconut fiber on the mechanical properties, plastic cracking behaviour, and impact resistance of cementitious composites. Construction and Building Materials. 2016;127:984-992. https://doi.org/10.1016/J.CONBUILDMAT.2016.09.118
  13. Hasanov S.H. Modelling of cracks nucleation in fiber composite under bending. Structural Mechanics of Engineering Constructions and Buildings. 2018;14(3):248-257. (In Russ.) https://doi.org/10.22363/1815-5235-2018-14-3-248-257
  14. Uday V.S., Ajitha B. Concrete reinforced with coconut fibers. International Journal of Engineering Science and Computing. 2017;7(4):10436.
  15. Galishnikova V.V., Chiadighikaobi P.C., Emiri D.A. Comprehensive view on the ductility of basalt fiber reinforced concrete focus on lightweight expanded clay. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(5):360-366. http://doi.org/10.22363/1815-5235-2019-15-5-360-366
  16. Iushkin I.I., Alamedy S.G.H., Stashevskaya N.A. Problems and benefits of implementing BIM in the construction industry. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(2):172-181. (In Russ.) http://doi.org/10.22363/1815-5235-2022-18-2-172-181

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».