Thermal processing of fresh concrete with infrared radiation
- 作者: Svintsov A.P.1, Cisse A.1
-
隶属关系:
- Peoples’ Friendship University of Russia (RUDN University)
- 期: 卷 17, 编号 5 (2021)
- 页面: 528-537
- 栏目: Experimental researches
- URL: https://journals.rcsi.science/1815-5235/article/view/325650
- DOI: https://doi.org/10.22363/1815-5235-2021-17-5-528-537
- ID: 325650
如何引用文章
全文:
详细
Currently, the construction of buildings made of monolithic concrete and reinforced concrete is becoming increasingly relevant. The use of innovative technologies, minimum construction time, durability, reliability, the ability to perform work in various climatic conditions, architectural individuality contribute to the development of monolithic construction. Concrete and reinforced concrete are the main materials of modern construction. The quality of structures depends not only on the composition of concrete, the amount of portland cement, the chemical additives used, the water-cement ratio, the quality of fillers, etc., but also significantly on the heat and humidity regime of concrete holding. To ensure the necessary temperature conditions for hardening and strength gain of concrete, various methods of heating structures are used. One of the methods of concrete care is thermal processing during the hardening period and the acquisition of critical or design strength. The aim of the study is to improve the technology of erection of monolithic concrete and reinforced concrete structures using thermal processing of concrete by means of infrared radiation. The technology of thermal processing of the laid and compacted concrete mixture using infrared heating and a two-chamber transparent shelter for infrared rays has been developed. The obtained results permit us to provide conditions for the normal course of the chemical reaction of hydration, hardening and strength gain. This allows successfully solve the problems of concreting in the erection of buildings and structures made of monolithic concrete and reinforced concrete.
作者简介
Alexander Svintsov
Peoples’ Friendship University of Russia (RUDN University)
编辑信件的主要联系方式.
Email: svintsovap@rambler.ru
ORCID iD: 0000-0003-0564-3307
Doctor of Technical Sciences, Professor of the Department of Construction, Engineering Academy
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationAlimu Cisse
Peoples’ Friendship University of Russia (RUDN University)
Email: cisserudn88@gmail.com
postgraduate student of the Department of Construction, Engineering Academy 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
参考
- Rizzuto J.P., Kamal M., Elsayad H., Bashandy A., Etman Z., … Shaaban I.G. Effect of self-curing admixture on concrete properties in hot climate conditions. Constr. Build. Mater. 2020;261:119933. https://doi.org/10.1016/j.conbuildmat.2020.119933
- Bella N., Bella I.A., Asroun A. A review of hot climate concreting, and the appropriate procedures for ordinary jobsites in developing countries. MATEC Web of Conferences. 2017;120:02024. https://doi.org/10.1051/matecconf/201712002024 ASCMCES-17
- Un H., Baradan B. The effect of curing temperature and relative humidity on the strength development of portland cement mortar. Scientific Research and Essays. 2011;6(12):2504-2511. https://doi.org/10.5897/SRE11.269
- Pavlov V.V., Krainov D.V., Akhmerova G.M. Influence of electric heating on concrete strength of individual sections of monolithic reinforced concrete multi-span slabs. Bull. Civ. Eng. 2019;6(77):111-113. (In Russ.) https://doi.org/10.23968/19995571-2019-16-5-111-113
- Permyakov M.B., Krasnova T.V., Kurochkina S.O. The use of solar energy to intensify the hardening of concrete. Actual Problems of Modern Science, Technology and Education. 2019;10(2):7-11. (In Russ.)
- Höhlig B., Schröfl C., Hempel S., Noack I., Mechtcherine V., … Roland U. Heat treatment of fresh concrete by radio waves - avoiding delayed ettringite formation. Constr. Build. Mater. 2017;143:580-588. http://doi.org/10.1016/j.conbuildmat.2017.03.111
- Zhorobayev S.S. Concrete humidity control under intensification of concrete hardness of monolithic reinforced concrete constructions. Bull. SRC Constr. 2019;(3(22)):79-84. (In Russ.)
- Boroulya N.I., Krasnova T.A. Issues of ensuring the preservation of concrete mixtures properties in time. Concrete Technology. 2013;(6(83)):8-11. (In Russ.)
- Marchon D., Flatt R.J. Mechanisms of cement hydration. Sci. Tech. Concr. Admixtures. Woodhead; 2016. p. 129-145. https://doi.org/10.1016/B978-0-08-100693-1.00008-4
- Nkinamubanzi P.C., Mantellato S., Flatt R.J. Superplasticizers in practice. Sci. Tech. Concr. Admixtures. Woodhead; 2016. p. 353-377. https://doi.org/10.1016/B978-0-08-100693-1.00016-3
- Stark J., Wicht B. Dauerhaftigkeit von Beton. Springer: Berlin Heidelberg; 2013.
- Svintsov A.P., Nikolenko Y.V., Kurilkin V.V. Heat treatment of concrete mix in cast-in-situ structures. Industrial Civ. Eng. 2015;1:15-19 (In Russ.)
- Abeka H., Agyeman S., Adom-Asamoah M. Thermal effect of mass concrete structures in the tropics: experimental, modelling and parametric studies. Cogent Engineering. 2017;4(1):1278297. https://doi.org/10.1080/23311916.2016.1278297
- De Schutter G., Yuan Y., Liu X., Jiang W. Degree of hydration-based creep modeling of concrete with blended binders: from concept to real applications. Journal of Sustainable Cement-Based Materials. 2014;4(1):1-14. https://doi.org/10.1080/21650373.2014.928808
- Lawrence A.M., Tia M., Ferraro C., Bergin M. Effect of early age strength on cracking in mass concrete containing different supplementary cementitious materials: experimental and finite-element investigation. Journal of Materials in Civil Engineering. 2012;24:362-372. http://doi.org/10.1061/(ASCE)MT.1943-5533.0000389
- Chuc N.T., Thoan P.V., Kiet B.A. The effects of insulation thickness on temperature field and evaluating cracking in the mass. Concrete Electronic Journal of Structural Engineering 2018;18(2):128-132.
- Xu Y., Xu Q., Chen S., Li X. Self-restraint thermal stress in early-age concrete samples and its evaluation. Construction and Building Materials. 2017;134:104-115. https://doi.org/10.1016/j.conbuildmat.2016.12.066
- Ding H., Zhang L., Zhang P., Zhu Q. Thermal and stress analysis of early age concrete for spread footing. Transactions of Tianjin University. 2015;21(6):477-483. https://doi.org/10.1007/s12209-015-2563-0
- Barbara K., Maciej B., Maciej P., Aneta Z. Analysis of cracking risk in early age mass concrete with different aggregate types. Procedia Engineering. 2017;193:234-241. https://doi.org/10.1016/j.proeng.2017.06.209
- Aniskin N.A., Chuc N.T., Bryansky I.A., Hung D.H. Determination of the temperature field and thermal stress state of the massive of stacked concrete by finite element method. Vestnik MGSU. 2018;13(11):1407-1418. (In Russ.) https://doi.org/10.22227/1997-0935.2018.11.1407-1418
- Havlásek P., Šmilauer V., Hájková K., Baquerizo L. Thermo-mechanical simulations of early-age concrete cracking with durability predictions. Mater. Sci. Eng. 2017;236:32-40.
- Lam T.V., Chuc N.T., Bulgakov B.I., Anh P.N. Composition calculation and cracking estimation of concrete at early ages. Magazine of Civil Engineering. 2018;6:136-148. https://doi.org/10.18720/MCE.82.13
- Podgornov N.I. Heat treatment of concrete with use of solar energy. Moscow: ASV Publ.; 2010. (In Russ.)
- Koroteev D.D., Harun M. Influence of construction of transparent covering on efficiency of concrete heat treatment in shuttering forms with using solar energy. Structural Mechanics of Engineering Constructions and Buildings. 2018; 14(1):64-69. (In Russ.) https://doi.org/10.22363/1815-5235-2018-14-1-64-69
补充文件
