Исследование геометрии и напряженно-деформированного состояния оболочек со срединными поверхностями, заданными двумя суперэллипсами и окружностью

Обложка

Цитировать

Полный текст

Аннотация

Рассмотрены тонкие оболочки в форме алгебраических поверхностей с геометрическим каркасом из трех суперэллипсов, лежащих в трех координатных плоскостях, в случае, когда горизонтальный суперэллипс представляет собой круглое основание. Показано, что в зависимости от формы остальных двух суперэллипсов можно получить коническую поверхность, поверхность отрицательной гауссовой кривизны, включая коноиды, или поверхность положительной гауссовой кривизны. Проиллюстрировано построение 12 примеров таких поверхностей на круглом основании. Из них 6 поверхностей впервые исследованы подробно методами дифференциальной геометрии, получены их коэффициенты квадратичных форм. Из 12 представленных форм оболочек для сравнительного статического расчета выбраны две линейчатые оболочки нулевой и отрицательной гауссовой кривизны (коническая поверхность и цилидроид) с одинаковым геометрическим каркасом. Расчет оболочек с равномерно распределенной нагрузкой производился с использованием метода конечных элементов (МКЭ) в перемещениях, реализованном в программном комплексе SCAD. Показано, что, несмотря на одинаковый геометрический каркас этих двух оболочек, по большинству параметров НДС лучшие показатели у конической оболочки.

Об авторах

Валерий Вячеславович Карневич

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: valera.karnevich@gmail.com
ORCID iD: 0000-0002-6232-2676
SPIN-код: 4233-3099

аспирант кафедры технологий строительства и конструкционных материалов, инженерная академия

Российская Федерация, 117198, г. Москва, ул. Миклухо-Маклая, д. 6

Ираида Ахсарбеговна Мамиева

Российский университет дружбы народов

Email: i_mamieva@mail.ru
ORCID iD: 0000-0002-7798-7187
SPIN-код: 3632-0177

ассистент кафедры технологий строительства и конструкционных материалов, инженерная академия

Российская Федерация, 117198, г. Москва, ул. Миклухо-Маклая, д. 6

Список литературы

  1. Ko K.H. A survey: Application of geometric modeling techniques to ship modeling and design. International Journal of Naval Architecture and Ocean Engineering. 2010;2(4):177-184. http://doi.org/10.2478/IJNAOE-2013-0034
  2. Krivoshapko S.N. Tangential developable and hydrodynamic surfaces for early stage of ship shape design. Ships and Offshore Structures. 2023;18:660-668. http://doi.org/10.1080/17445302.2022.2062165 EDN: TQOCBY
  3. Ma Y.Q., Wang C., Ang K.K., Xiang Y. Buckling of superellipsoidal shells under uniform pressure. Thin-Walled Structures. 2008;46:584-591. http://doi.org/10.1016/j.fws.2008.01.013
  4. Moonesun M., Mahdion A., Korol Y., Dadkhah M., Javadi M. Concepts in submarine shape design. Indian Journal of Geo-Marine Sciences. 2016;45(1):100-104. EDN: XLIBAL
  5. Krivoshapko S.N., Gebre T. Algebraic surfaces with three super ellipses for formation of submarine hull surfaces. Journal of Ship Research. 2024;68(1):16-22. http://doi.org/10.5957/JOSR.09220026 EDN: ENRCZU
  6. Karnevich V.V. Hydrodynamic surfaces with midsection in the form of Lame curve. RUDN Journal of Engineering Research. 2021;22(4):323-328. http://doi.org/10.22363/2312-8143-2021-22-4-323-328 EDN: GYCACT
  7. Karnevich V.V. Generating hydrodynamic surfaces by families of Lame curves for modelling submarine hulls. RUDN Journal of Engineering Research. 2022;23(1):30-37. https://doi.org/10.22363/2312-8143-2022-23-1-30-37 EDN: QVQEZM
  8. Strashnov S.V. Computer simulation of new forms of shell structures. Geometry & Graphics. 2022;10(4):26-34. http://doi.org/10.12737/2308-4898-2022-10-4-26-34 EDN: PXTLAU
  9. Krivoshapko S.N. Algebraic ship hull surfaces with a main frame from three plane curves in coordinate planes. RUDN Journal of Engineering Research. 2022;23(3):207-212. (In Russ.) http://doi.org/10.22363/2312-8143-2022-23-3-207-212 EDN: HEXIBR
  10. Mamieva I.A. Ruled algebraic surfaces with a main frame from three superellipses. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(4):387-395. (In Russ.) http://doi.org/10.22363/1815-5235-2022-18-4-387-395 EDN: KAGFQC
  11. Mamieva I.A., Karnevich V.V. Geometry and static analysis of thin shells with ruled middle surfaces of three superellipses as main frame. Building and Reconstruction. 2023;1(105):16-27. http://doi.org/10.33979/2073-7416-2023-105-1-16-27 EDN: LSIOLJ
  12. Krivoshapko S.N. Optimal shells of revolution and main optimizations. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(3):201-209. http://doi.org/10.22363/1815-5235-2019-15-3-201-209 EDN: XGRSDR
  13. Hunter J.D. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering. 2017;9(3):90-95. http://doi.org/10.1109/MCSE.2007.55
  14. Krivoshapko S.N. Surfaces with a main framework of three given curves which include one circle. Structural Mechanics of Engineering Constructions and Buildings. 2023;19(2):210-219. http://doi.org/10.22363/1815-5235-2023-19-2-210-219EDN: CWWLDM
  15. Schlichtkrull H. Curves and Surfaces: Lecture Notes for Geometry 1. University of Copenhagen. 2011. Available from: https://noter.math.ku.dk/geom1.pdf (accessed: 27.05.2025)
  16. Sysoeva E.V. Scientific approaches to calculation and design of large-span structures. Proceedings of Moscow State University of Civil Engineering. 2017;12(2):131-141. (In Russ.) http://doi.org/10.22227/1997-0935.2017.2.131-141 EDN: YGJDWF
  17. Goldenveizer A.L. Theory of Elastic Thin Shells. Published by Pergamon Press, New York, 1961. Available from: https://archive.org/details/theoryofelastict0000algo (accessed: 12.05.2025)
  18. Krivoshapko S.N., Razin A.D. Comparison of two systems of governing equations for the thin shell analysis. Proceedings of the ICER 2021, Moscow, 2022;2559:020009. http://doi.org/10.1063/5.0099905
  19. Grigorenko Ya.M., Timonin A.M. On one approach to the numerical solution of boundary problems on theory of complex geometry shells in the non-orthogonal curvilinear coordinate systems. Reports of AS of Ukraine USR. 1991;(4): 41-44. (In Russ.)
  20. Pietraszkiewicz W. Thin Elastic Shells, Linear Theory, Encyclopedia of Continuum Mechanics. Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg, 2018. https://doi.org/10.1007/978-3-662-53605-6_187-1
  21. Karpov V.V., Bakusov P.A., Maslennikov A.M., Semenov A.A. Simulation models and research algorithms of thin shell structures deformation Part I. Shell deformation models. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2023;23(3):370-410. (In Russ.) https://doi.org/10.18500/1816-9791-2023-23-3-370-410 EDN: YSOXDU
  22. Schnobrich W.C. Different methods of numerical analysis of shells. Lecture Notes in Engineering. 1987;26:1-17. https://doi.org/10.1007/978-3-642-83015-0_1
  23. Noor A.K. Bibliography of books and monographs on finite element technology. Applied Mechanics Reviews. 1991;44:307-317. https://doi.org/10.1115/1.3119505
  24. Karpilovskiy V.S., Kriksunov E.Z., Malyarenko A.A., Mikitarenko M.A., Perelmuter A.V., Perelmuter M.A. Computer Complex SCAD. Kyiv; 2025. Available from: https://scadsoft.com/download/Section1033.pdf (accessed: 12.06.2025).
  25. Zhi W.Z., Jiang L.Y. Analysis of cylindroid shell subject to internal linearly increased pressure. Advanced Materials Research. 2011;239-242:2584-2589. http://doi.org/10.4028/www.scientific.net/amr.239-242.2584
  26. Mathieu G. Reserve of analytical surfaces for architecture and construction. Building and Reconstruction. 2021; 6(98):63-72. https://doi.org/10.33979/2073-7416-2021-98-6-63-72 EDN: BCWXIS
  27. Rosin P.L., Geoff W. Curve Segmentation and Representation by Superellipses. IEE Proceedings - Vision Image and Signal Processing. 1995;142:280-288. https://doi.org/10.1049/ip-vis:19952140

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).