Сравнительный расчет оптимальных параметров швеллерных гнутых и гнутозамкнутых профилей

Обложка

Цитировать

Полный текст

Аннотация

Актуальность. Представлено новое техническое решение швеллерных гнутозамкнутых профилей (ГЗП), выделяющихся составным сечением и относящихся к легким стальным тонкостенным конструкциям (ЛСТК), которые отличаются высокими технико-экономическими показателями и массовым спросом в промышленно-гражданском строительстве. Приведены также основные итоги сравнительного расчета оптимальных параметров гнутых швеллеров и швеллерных ГЗП на изгиб. Цель исследования - показать, что характеристики ЛСТК можно дополнительно улучшить при помощи формообразования модификации профилей, сочетающей в своем составном сечении прямые и круглые очертания замкнутых и открытых контуров. Методы. Посредством опытно-конструкторских проработок и оптимизационно-проектных расчетов швеллерных профилей разработано их новое техническое решение, оригинальность которого подтверждена патентной экспертизой. Результаты. Швеллерный ГЗП состоит из двух трубчатых полок и одной стенки двойной толщины. Для его изготовления без сварных, болтовых или заклепочных соединений наружная и внутренняя заготовки выполняются по всей длине с зубчатыми продольными кромками, зубцы которых расположены относительно друг друга в шахматном порядке и взаимно загнуты в пазах между собой после замыкания гнутого профиля по его полкам. Загибы зубчатых креплений увеличивают толщину смятия, обеспечивают рост местной устойчивости и прочности соединений тонкостенных элементов на сдвиг, а также позволяют не редуцировать расчетные сечения. Сравнительный расчет оптимальных параметров гнутых швеллеров и швеллерных ГЗП на изгиб показал, что у первых из них прочность максимальна при отношении габаритов ширины и высоты сечения 1/6, а у вторых - 1/5,68.

Об авторах

Александр Суренович Марутян

Институт сервиса, туризма и дизайна (филиал Северо-Кавказского федерального университета) в г. Пятигорске

Автор, ответственный за переписку.
Email: al_marut@mail.ru

кандидат технических наук, доцент, старший научный сотрудник отдела организации проектно-грантовой деятельности, преподаватель колледжа

Российская Федерация, 357500, Пятигорск, пр-кт 40 лет Октября, 56

Список литературы

  1. Taran V.V., Selishchev K.E. (2018). Vozvedenie zdanij iz legkih stal'nyh tonkostennyh konstrukcij [Construction of low rise buildings of light steel thin-walled structures]. Bulletin of the Donbass National Academy of Construction and Architecture, (6), 18–23. (In Russ.)
  2. Chernoivan V.N., Chernoivan N.V., Horovets V.V., Chernoivan A.V. (2018). The construction and renovation of residential buildings with the use of light-gauge steel constructions (LGSC). Bulletin of the Brest State Technical University, (1), 115–118. (In Russ.)
  3. Sovetnikov D.O., Videnkov N.V., Trubina D.A. (2015). Light gauge steel framing in construction of multi-storey buildings. Construction of Unique Buildings and Structures, 3(30), 152–165. doi: 10.18720/CUBS.30.11. (In Russ.)
  4. Reshetnikov A.A., Kornet V.Yu., Leonova D.A. (2018). Analiz ekonomicheskogo preimushchestva perekrytiya iz LSTK pered derevyannym [Analysis of the economic benefits of flooring from LSTK over wooden]. Engineering Herald of the Don, (3). http://www.ivdon.ru/ru/magazine/ archive/n31y2018/5125. (In Russ.)
  5. Rybakov V.A., Maslak T.V., Fedotova K.A., Smirnov A.V., Ananiev I.A. (2017). Reconstruction of Pitched Roofs Using Steel Thin-Walled Structures. Construction of Unique Buildings and Structures, 12(63), 20–48. doi: 10.18720/CUBS.63.2. (In Russ.)
  6. Ustimenko E.E., Skachkov S.V. (2019). Eksperimental'noe issledovanie ramno-sterzhnevyh konstrukcij s elementami iz tonkostennyh stal'nyh profilej [An experimental study of frame-rod structures with elements of thin-walled steel profiles]. Engineering Journal of the Don, (5). http://www.ivdon.ru/ ru/magazine/archive/n5y2019/5972. (In Russ.)
  7. Atavin I.V., Kazakov Yu.D., Melnikov B.E., Semenov A.S., Sherstnev V.A. (2018). Vliyanie zhestkosti uzlovogo soedineniya na mekhanicheskie harakteristiki stellazha [The influence of the rigidity of the nodal connection on the mechanical characteristics of the rack]. Construction of unique buildings and structures, (8), 1–12. (In Russ.)
  8. Kremnev A.P., Kremneva E.G., Radkevich R.A. (2018). Eksperimental'no-teoreticheskoe issledovanie plit iz penobetona i tonkostennogo stal'nogo holodnodeformirovannogo ocinkovannogo profilya [Experimental-theoretical study of foam concrete slabs and thin-walled steel colddeformed galvanized profiles]. Bulletin of Polotsk State University. Series F. Construction, (16), 37–42. (In Russ.)
  9. Dubatovka A.I. (2015). Ognevye ispytaniya stenovyh panelej s karkasom iz tonkostennyh holodnodeformirovannyh profilej so sbornoj obshivkoj iz steklomagnievogo lista [Fire tests of wall panels with a framework of thinwalled cold-deformed profiles with prefabricated cladding of glass-magnesium sheet]. Bulletin of Polotsk State University. Series F. Construction, (8), 57–61. (In Russ.)
  10. Yea J., Becquea J., Hajirasouliha I., Mojtabaeia S.M., Limb J.B.P. (2018). Development of optimum cold-formed steel sections for maximum energy dissipation in uniaxial bending. Engineering structures, (161), 55–67.
  11. Yousefi A.M., Lim J.B.P., Clifton G.C. (2019). Web crippling design of cold-formed ferritic stainless steel unlipped channels with fastened flanges under end-twoflange loading condition. Journal of constructional steel research, (152), 12–28.
  12. Yea J., Hajirasouliha I., Becquea J. (2018). Experimental investigation of local-flexural interactive buckling of cold-formed steel channel columns. Twin-walled structures, (125), 245–258.
  13. Servaraj S., Madhavan M. (2019). Investigation on sheathing effect and failure modes of gypsum sheathed cold-formed steel wall panel completed to bending. Structures, (17), 87–101.
  14. Marutyan A.S. (2019). Shvellernyj gnutozamknutyj profil' [Channel bent closed profile]. Patent RUS No. 2685013. Bul. No. 11. https://www1.fips.ru/ofpstorage/ Doc/IZPM/RUNWC1/000/000/002/013/%D0%98%D0%9 7-02685013-00001/docement.pdf. (In Russ.)
  15. Antipov V.G., Safronov M.F., Tulupov S.A., Afanasyev V.F., Krivonosov S.V. (1998). Gnutyj shvellernyj profil' [Bent channel profile]. Patent RUS No. 2113306. Bul. No. 17. https://www1.fips.ru/registers-doc-view/fipsservlet?DB=RU PAT&DocNumber=21133068&TypeFile=html. (In Russ.)
  16. Antipov V.G., Safronov M.F., Afanasyev V.F., Krivonosov S.V. (1998). Gnutyj profil' shvellernogo tipa [Bent channel profile type]. Patent RUS No. 21118579. Bul. No. 25. https://www1.fips.ru/registers-doc-view/fipsservlet?DB= RUPAT&DocNumber=2118579&TypeFile=html. (In Russ.)
  17. Buecker R.V. (2000, Oct. 17). Sheet metal beam. United States Patent No. US 6131362 A.
  18. Bartlett R.D., Dempsey R.Ya., Watkins R.L., Noller A., Yokoyama K. (2008, Feb. 7). An improved beam. United States Patent Application Publication No. US 2008/0028720 A1.
  19. Bartlett R.D., Dempsey R.Ya., Watkins R.L., Noller A., Yokoyama K. (2008). Improved beam. Patent RUS No. 2340744. Bul. No. 34. https://www1.fips.ru/Archive/ PAT/2008.12.10/DOC/RUNWC2/000/000/002/340/744/D OCUMENT.PDF. (In Russ.)
  20. Marutyan A.S. (2019). Curved closed profiles and calculation of their optimal parameters. Structural Mechanics of Engineering Constructions and Buildings, 15(1), 33–43. http://dx.doi.org/10.22363/1815-5235-2019-15-133-43. (In Russ.)
  21. Savenko P.N. (2002). Sposob izgotovleniya i soedineniya konstrukcionnyh elementov iz tonkolistovyh metallov [A method of manufacturing and connecting structural elements from sheet metals]. Patent RUS No. 2189506. Bul. No. 26. https://www1.fips.ru/registers-doc-view/fipsservlet? DB=REPAT&DocNumber=21895068&TypeFile=html. (In Russ.)
  22. Dmitriev A.N., Katyushin V.V., Cement P.E. (2016). Sposob izgotovleniya zamknutogo metallicheskogo profilya i tekhnologicheskij kompleks dlya ego osushchestvleniya [A method of manufacturing a closed metal profile and a technological complex for its implementation]. Patent RUS No. 2581687. Bul. No. 11. https://www1.fips.ru/registersdoc-view/fipsservlet?DB=RUPAT&DocNumber=2581687 &TypeFile=html. (In Russ.)
  23. Prosyanikov B.D. (2016). Bolted Joint With Reciprocal Punch of Connected Slender Sections. Vestnik of Tomsk State University of Architecture and Building, (2), 130–138. (In Russ.)
  24. Kuznetsov I.L., Fakhrutdinov A.F., Ramazanov R.R. (2016). Results of experimental research for shear strain of connections of thin-walled elements. Vestnik MGSU, (12), 34–43. doi: 10.22227/1997-0935.2016.12.34-43. (In Russ.)
  25. Kuznetsov I.L., Gimranov L.R., Salakhutdinov M.A., Fakhrutdinov A.E. (2017). Sovershenstvovanie uzlov stal'nyh ferm s poyasami iz mnogogrannyh trub [Improving the nodes of steel trusses with belts from multifaceted pipes]. Bulletin of KGASU, (3), 116–123. (In Russ.)
  26. Kuznetsov I.L., Salakhutdinov M.A., Gaynetdinov R.G. (2018). Stend i rezul'taty ispytaniya fermy proletom 24 m so sterzhnyami iz ocinkovannyh holodnognutyh profilej [Bench and test results of a farm with a span of 24 m with rods of galvanized cold-formed profiles]. Bulletin of KGASU, (4), 193–199. (In Russ.)
  27. Elliot M.D., Teh L.N., Ahmed A. (2019). Behavior and strength of bolted connections failing in shear. Journal of constructional steel research, (153), 320–329.
  28. Kuznetsov I.L., Gaynetdinov R.G. (2019). Central'nyj uzel verhnego poyasa stropil'noj fermy iz sterzhnej holodnognutogo profilya [The central node of the upper zone of the truss from rods of a cold-formed profile]. Bulletin of KGASU, (1), 140–146. (In Russ.)
  29. Kuznetsov I.L., Salakhutdinov M.A., Gaynetdinov R.G. (2019). Investigation of the stress-deformation state of a bolt-joint assembly of cold-bent thin-walled profiles. Vestnik MGSU, (4), 831–843. doi: 10.22227/19970935.2019.7.831-843. (In Russ.)
  30. Solodov N.V., Vodyakhin N.V., Ischuk Ya.L. (2019). Improving the strength of harnessing connection of thinsheet plates. Bulletin of BGTU named after V.G. Shukhov, (9), 30–37. doi: 10.34031/article_5da44cc0ad5700.29474015. (In Russ.)
  31. Bely G.I. (2017). K opredeleniyu reducirovannyh sechenij sterzhnevyh elementov legkih stal'nyh tonkostennyh konstrukcij [To the determination of reduced sections of the core elements of light steel thin-walled structures]. Bulletin of civil engineers, (6), 33–37. (In Russ.)
  32. Nadolsky V.V., Dergachev M.G. (2017). Metod effektivnoj shiriny dlya tonkostennyh holodnoformovannyh elementov soglasno trebovaniyam Evrokoda 3 [The effective width method for thin-walled cold-formed elements according to the requirements of Eurocode 3]. Bulletin of Polotsk State University. Series F. Construction, (8), 105–111. (In Russ.)
  33. Morozov Yu.A., Verkhov E.Yu. (2019). Determination of the width under bending conditions with stretching of the stamped part. Structural Mechanics of Engineering Constructions and Buildings, 15(2), 83–89. DOI: http:// dx.doi.org/10.22363/1815-5235-2019-15-2-83-89 (In Russ.)
  34. Yea J., Hajirasouliha I., Becque J., Pilakoutas K. (2016). Development of more efficient cold-formed steel channel sections in bending. Twin-walled structures, (101), 1–13.
  35. Yea J., Hajirasouliha I., Becque J., Eslami A. (2016). Optimum design of cold-formed steel beams using Particle Swarm Optimization method. Journal of constructional steel research, (122), 80–93.
  36. Yea J., Mojtabaei S.M., Hajirasouliha I. (2018). Localflexural interactive buckling of optimized cold-formed steel columns. Journal of constructional steel research, (144), 106–118.
  37. Urmatskikh A.V., Shemshurova N.G. (2007). Sovershenstvovanie konstrukcii i razvitie tekhnologii proizvodstva gnutyh profilej povyshennoj zhestkosti [Improving the design and development of the technology for the production of bent profiles with increased stiffness]. Vestnik of Nosov Magnitogorsk State Technical University, (1), 67–70. (In Russ.)
  38. Zhdanov D.A., Ulasevich V.P., Zinkevich I.V. (2015). Eksperimental'nye issledovaniya fragmenta pologo arochnogo pokrytiya iz tonkolistovogo holodnognutogo profilya tipa MIC-120 s poperechnymi goframi [Experimental studies of a fragment of a hollow arched coating from a cold-rolled thin-sheet profile type MIC-120 with transverse corrugations]. Bulletin of Polotsk State University. Series F. Construction, (8), 33–39. (In Russ.)
  39. Yakovleva E.L., Atavin I.V., Kazakova Yu.D., Maksudov I.Kh. (2017). Strength characteristics of thin-walled elements. Construction of Unique Buildings and Structures, (12), 125–139. doi: 10.18720/CUBS.63.7. (In Russ.)
  40. Xuhong Zhou, Yu Shi, Lei Xu, Ximmei Yao, Weiyong Wang. (2019). A simplified method to evaluate the flexural capacity of lightweight cold-formed steel floor system with oriented strand board subfloor. Twin-walled structures, (134), 40–51.
  41. Marutyan A.S. (2016). Optimization of structures made of tubular (notowanych) profiles square (rectangular) and rhombic cross sections. Structural Mechanics and Analysis of Constructions, (1), 30–38. (In Russ.)
  42. Marutyan A.S. (2019). Calculation of optimal parameters of semiplanar pipes for truss and beam structures. Structural Mechanics and Analysis of Constructions, (2), 68–74. (In Russ.)
  43. Brudka J., Lubinsky M. (1974). Legkie stal'nye konstrukcii [Lightweight steel structures] (pp. 129–131). Moscow: Stroyizdat Publ. (In Russ.)
  44. Pisarenko G.S., Yakovlev A.P., Matveev V.V. (1988). Spravochnik po soprotivleniyu materialov [Reference book of resistance of materials] (pp. 68–69). Kiev: Naukova Dumka Publ. (In Russ.)
  45. GOST 14350-80. (1980). Profili prokata gnutye. Terminy i opredeleniya [Bent Profiles. Terms and Definitions]. Moscow, Izdatelstvo standartov Publ. (In Russ.)
  46. SP 260.132555800.2016. (2016). Konstrukcii stalnye tonkostennye iz xolodnognutyx ocinkovannyx profilej i gofrirovannyx listov. Pravila proektirovaniya [Thin-walled steel structures made of cold-formed galvanized profiles and corrugated sheets. Design rules]. Moscow. (In Russ.)
  47. TsNIIPSK imeni N.P. Melnikova. (1999). Rekomendacii po proektirovaniyu, izgotovleniyu montazhu ograzhdayushhix i nesushhix konstrukcij iz stalnyx gnutyx profilej povyshennoj zhestkosti [Recommendations for the design, manufacture of installation of enclosing and supporting structures from steel bent profiles of increased rigidity] (pp. 8–11). Moscow. (In Russ.)
  48. GOST 19904-90. (2012). Prokat listovoj xolodnokatanyj. Sortament [Cold-rolled sheet metal. Assortment]. Moscow, Standartinform Publ. (In Russ.)
  49. TU 112000-001-12586100-2009. (2009). Profili stalnye gnutye dlya legkix stalnyx konstrukcij [Bent steel profiles for light steel structures]. Chelyabinsk. (In Russ.)
  50. Belyaev N.A. (2015). Sortament xolodnoformovannyx profilej LSTK proizvoditelej Ukrainy [Assortment of coldformed profiles of LSTK producers of Ukraine]. Kiev. (In Russ.)
  51. Hayrumyan E.L. (2004). Rekomendacii po proektirovaniyu, izgotovleniyu i montazhu konstrukcij maloetazhnyx zdanij i mansard iz xolodnognutyx stalnyx ocinkovannyx profilej proizvodstva OOO “BaltProfil” [Recommendations for the design, manufacture and installation of structures of low-rise buildings and attics from cold-formed steel galvanized profiles manufactured by “BaltProfil” LLC]. Moscow, TsNIIPSK imeni N.P. Melnikova. (In Russ.)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).