Численный анализ устойчивости цилиндрической оболочки, взаимодействующей с неоднородным окружающим основанием

Обложка

Цитировать

Полный текст

Аннотация

Цель исследования - определить критическую нагрузку пространственной модели системы «оболочка - основание» в случае неоднородных физико-механических свойств основания вдоль продольной оси цилиндрической оболочки в нелинейной постановке задачи. Методы . Задача решена численным методом с использованием программного конечно-элементного комплекса ANSYS. Выполнено два расчетных случая пространственной модели системы «оболочка - основание» с учетом и без учета коэффициента трения между оболочкой и окружающим основанием. Окружающее основание разделено на два равных массива с разными физико-механическими свойствами. Расчет проведен в геометрически, физически и конструктивно нелинейных постановках. Нелинейность обусловлена необходимостью посредством итерационного процесса отыскания зоны контакта элементов (область отлипания оболочки от основания) и определения изменяющегося во времени положения оболочки. Расчетная модель составлена из двумерных плоских четырехузловых элементов оболочки и трехмерных тетраэдральных десятиузловых элементов окружающего основания. Применены односторонние контактные элементы. Критические нагрузки установлены относительно действующей нагрузки от собственного веса. Результаты. Получены критические нагрузки от двух расчетных случаев пространственной модели системы «оболочка - основание». Произведен сравнительный анализ результатов. Дана оценка запаса устойчивости оболочки относительно действующей нагрузки.

Об авторах

Сергей Борисович Косицын

Российский университет транспорта

Email: kositsyn-s@yandex.ru
ORCID iD: 0000-0002-3241-0683

советник РААСН, доктор технических наук, профессор, заведующий кафедрой теоретической механики

Российская Федерация, 127994, Москва, ул. Образцова, д. 9

Владимир Юрьевич Акулич

Российский университет транспорта

Автор, ответственный за переписку.
Email: vladimir.akulich@gmail.com
ORCID iD: 0000-0002-9467-5791

аспирант кафедры теоретической механики

Российская Федерация, 127994, Москва, ул. Образцова, д. 9

Список литературы

  1. Lalin V.V., Dmitriev A.N., Diakov S.F. Nonlinear deformation and stability of geometrically exact elastic arches. Magazine of Civil Engineering. 2019;5(89):39–51. http://dx.doi.org/10.18720/MCE.89.4
  2. Semenov A.A. Strength and stability of geometrically nonlinear orthotropic shell structures. Thin-Walled Structures. 2016;106:428–436. http://dx.doi.org/10.1016/j.tws.2016.05.018
  3. Semenov A.A. Methodology research of stability of shallow orthotropic shells of double curvature under dynamic loading. International Journal for Computational Civil and Structural Engineering, 2017;13(2):145–153. http://dx.doi.org/10.22337/2587-9618-2017-13-2-145-153
  4. Theory reference for the mechanical APDL and mechanical applications. ANSYS, Inc. 2009.
  5. Timoshenko S.P. Theory of elastic stability. Moscow: Gostekhizdat Publ.; 1955. (In Russ.)
  6. Kosytsyn S.B., Akulich V.Yu. The definition of the critical buckling load beam model and two-dimensional model of the round cylindrical shell that interact with the soil. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(4):291–298. (In Russ.) http://dx.doi.org/10.22363/1815-5235-2019-15-4-291-298
  7. Kosytsyn S., Akulich V. Buckling load of an infinitely long cylindrical shell interacting with the soil environment. J. Phys.: Conf. Ser. 2020;1425:012078. http://dx.doi.org/10.1088/1742-6596/1425/1/012078
  8. Leontiev A.N., Leontieva I.G. Analysis of an infinite composite beam located on elastic foundation. Proceedings of Moscow State University of Civil Engineering. 2010;(4):167–172. (In Russ.)
  9. Gabbasov R.F., Uvarova N.B., Filatov V.V. On calculation of beams resting on two-parameter elastic foundations. Proceedings of Moscow State University of Civil Engineering. 2012;(2):25–29. (In Russ.)
  10. Kositsyn S.B., Chan S.L. Numerical analysis of the stress-strain state of orthogonally intersecting cylindrical shells with and without taking into account their one-sided interaction with the surrounding soil mass. International Journal for Computational Civil and Structural Engineering. 2014;(1):72–78. (In Russ.)
  11. Kositsyn S.B., Chan S.L. Comparative analysis of various models of the soil mass surrounding the cylindrical shell, taking into account the possibility of its detachment from the shell. International Journal for Computational Civil and Structural Engineering. 2013;(1):65–72. (In Russ.)
  12. Timoshenko S.P. A course in the theory of elasticity. Kiev: Naukova Dumka Publ.; 1972. (In Russ.)
  13. Zenkevich O.K. Finite element method in engineering. Moscow: Mir Publ.; 1975. (In Russ.)
  14. Thompson J.M.T., Hunt G.W. The buckling of structures in theory and practice. Moscow: Nauka Publ.; 1991. (In Russ.)
  15. Kyriakides S., Babcock C.D. Large deflection collapse analysis of an inelastic inextensional ring under external pressure. Int. J. of Solids and Structures. 1981;17:981–993.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).