The opportunities of umbrella-type shells
- Autores: Krivoshapko S.N.1
-
Afiliações:
- Peoples’ Friendship University of Russia (RUDN University)
- Edição: Volume 16, Nº 4 (2020)
- Páginas: 271-278
- Seção: Geometrical investigations of middle surfaces of shells
- URL: https://journals.rcsi.science/1815-5235/article/view/325623
- DOI: https://doi.org/10.22363/1815-5235-2020-16-4-271-278
- ID: 325623
Citar
Texto integral
Resumo
Relevance. The necessity of division of umbrella surfaces and surfaces of umbrella type into two separated classes is explained in introduction. Earlier, umbrella surfaces and surfaces of umbrella type were in the same class of surfaces because they consist of the identical fragments lying on the surfaces of revolution. Umbrella surfaces are compound surfaces on the base surface of revolution but umbrella-type surfaces are kinematic surfaces formed by continuous movement of a changing curve and that is why taking into account the methods of construction of these surfaces they were divided in two separate classes. The aim of the work is a collection of main publications on all areas of the investigation of umbrella-type shells. Methods. For the determination of principal results of investigation of umbrella-type shells, it is necessary to know differential geometry of surfaces, structural mechanics of thin shells, and approaches used in architecture of spatial structures. Results. In this article, the principal scientific papers on geometry, strength analysis, and offers of applications of thin-walled shells of umbrella type in building and of reflectors of umbrella type for space apparatuses. The accurate parametric equations of some determined surfaces are presented. The approximated computer models of middle surfaces of the real umbrella shells but in the form of umbrella-type surfaces are given. The examples of determination of stress-strain state of thin-walled shells of umbrella type without dividing of the whole shell in identical fragments are shown. New information and materials already known about shells of umbrella type give reasons to suppose that the shells of this type will be claimed by engineers and architects.
Sobre autores
Sergey Krivoshapko
Peoples’ Friendship University of Russia (RUDN University)
Autor responsável pela correspondência
Email: krivoshapko-sn@rudn.ru
Código SPIN: 2021-6966
Professor of the Department of Civil Engineering of Academy of Engineering, DSc, Professor
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationBibliografia
- Bradshaw R., Campbell D., Gargari M., Mirmiran A., Tripeny P. Special structures. Past, present, and future. Journal of Structural Engineering. 2002:691-701.
- Krivoshapko S.N. On opportunity of shell structures in modern architecture and building. Structural Mechanics of Engineering Constructions and Buildings. 2013;(1):51-56. (In Russ.)
- Krivoshapko S.N. Shells and rod structures in the form of analytically non-given surfaces in modern architecture. Building and Reconstruction. 2020;(3):20-30. (In Russ.)
- Krivoshapko S.N., Mamieva I.A. Analiticheskie poverhnosti v arhitekture zdaniy, konstruktziy i izdeliy [Analytical Surfaces in Architecture of Buildings, Structures, and Products]: monography. Moscow: LIBROCOM Publ.; 2012. (In Russ.)
- Krivoshapko S.N., Ivanov V.N. Entsiklopediya analiticheskikh poverkhnostei [Encyclopedia of analytical surfaces]. Moscow: LIBROKOM Publ.; 2010. (In Russ.)
- Ivanov V.N., Krivoshapko S.N. Design of umbrella shells from the fragments of cyclic translation shells. Structural Mechanics of Engineering Constructions and Buildings. 2011;(1): 3-7. (In Russ.)
- Bock Hyeng Ch.A., Krivoshapko S.N. Umbrella-Type Surfaces in Architecture of Spatial Structures. IOSR Journal of Engineering (IOSRJEN). 2013;3(3):43-53.
- Draper P., Garlock M.E.M., Billington D.P. Structural optimization of Félix Candela’s hypar umbrella shells. Journal of the International Association for Shells and Spatial Structures. 2012;51(1):59-66.
- Tsvingman G.A. Types principaux des domes, leur construction et l’architecture. In: Alexandrov A.J. (redacteur) Problèmes D’Architecture: Recueil des Matèriaux (vol. 1, livre 2). Academie D’Architecture De L’Union des R.S.S; 1936. p. 25-385. (In Russ.)
- Krivoshapko S.N. Geometrical investigations of surfaces of umbrella type. Structural Mechanics of Engineering Constructions and Buildings. 2005;(1):11-17. (In Russ.)
- Krivoshapko S.N. New examples of surfaces of umbrella type and their coefficients of fundamental forms of surfaces. Structural Mechanics of Engineering Constructions and Buildings. 2005;(2):6-14. (In Russ.)
- Ariarskyi O., Shagalova I., Kravchenko T., Kulakova E. Umbrella surfaces morphology and their application in the architecture and design. Pratzi TDATU. 2011; 4(49):178-190. (In Russ.)
- Skidan I. General analytical theory of applied formation. The 10th International Conference on Geometry and Graphics (July 28 - August 2, 2002, Kyiv, Ukraine). 2002; 1:104-107.
- Von Seggern D.H. CRC Standard Curves and Surfaces. Boca Raton, FL: CRC Press; 1993.
- Ivanov V.N. Analyses of stress-strain state of roofing of trade center in the form of umbrella shell by difference variation method. Structural Mechanics of Engineering Constructions and Buildings. 2008;(4):86-89. (In Russ.)
- Ivanov V.N. Kanalovye poverkhnosti Ioakhimstalya s ploskoi liniei tsentrov [Canal Joachimsthal surfaces with plane line of the centers]. Issledovaniya prostranstvennykh system [Research of spatial systems]: materials of the seminar of the Department of Resistance of Materials of RUDN University]. Moscow: RUDN University Publ.; 1996. p. 32-36. (In Russ.)
- Abboushi N.Y.A. Volnoobraznye kupola [Wave-shaped domes]. Stroitelnaya mekhanika inzhenernykh konstruktsii i sooruzhenii [Structural Mechanics of Engineering Constructions and Buildings]: interuniversity collection of scientific papers. 2002;(11):49-58. (In Russ.)
- Romanova V.A. Features of the image of process of formation of surfaces in AutoCad system. Structural Mechanics of Engineering Constructions and Buildings. 2014;(3):19-22. (In Russ.)
- Romanova V.A. Visualization of forming of umbrella-type and umbrella surfaces with radial damping waves in the central point. Structural Mechanics of Engineering Constructions and Buildings. 2015;(3):4-8. (In Russ.)
- Chepurnenko A.S., Kochura V.G., Saybel A.V. Finite elemental analysis of the stress deformed condition of waveform shells. Construction and Industrial Safety. 2018;11(63):27-31. (In Russ.)
- Krivoshapko S.N., Alborova L.A. Unikalnye sooruzheniya v forme lineichatykh, zontichnykh poverkhnostei, poverkhnostei vrashcheniya i perenosa [Unique Erections in the Form of Ruled, Umbrella Surfaces, Surfaces of Revolution and Translation]. Moscow: VNIINTPI Publ.; 2008. (In Russ.)
- Krivoshapko S.N., Mamieva I.A. Umbrella surfaces and surfaces of umbrella type in the architecture. Prom. i grazhdansk. stroitelstvo. 2011;7(1):27-31. (In Russ.)
- Maan H. Jawad. Design of Plate & Shell Structures. ASME PRESS, NY; 2004.
- Krivoshapko S.N. The perspectives of application of thin-walled plastic and composite polymer shells in civil and industrial architecture. Journal of Reinforced Plastics and Composites. 2018;37(4):217-229. doi: 10.1177/07316 84417740770.
- Ponomarev S.V. Transformed reflectors of antennas of space apparatus. Vestnik Tomskogo Gos. Universiteta. 2011;4(16):110-119. (In Russ.)
- Lebedev V.A. Tonkostennye zontichnye obolochki [Thin-Walled Umbrella Shells]. Leningrad: Gosstroyizdat Publ.; 1958. (In Russ.)
- Abboushi N.Y.A. Chislennyi analiz kanalovykh poverkhnostei Ioakhimstalya na sobstvennyi ves variatsionno-raznostnym metodom [Numerical analysis of Joachimsthal’s canal surfaces on a gravity load by variation-difference method]. Arkhitektura obolochek i prochnostnoi raschet tonkostennykh stroitelnykh i mashinostroitelnykh konstruktsii slozhnoi formy [Shells in Architecture and Strength Analysis of Thin-Walled Civil-Engineering and Machine-Building Constructions of Complex Forms]: Proc. of Int. Scientific Conference (Moscow, June 4-8, 2001). Moscow: RUDN University Publ.; 2001. p. 297-306. (In Russ.)
Arquivos suplementares
