Geometric Investigation of Three Thin Shells with Ruled Middle Surfaces with the Same Main Frame
- Авторлар: Gbaguidi Aisse G.L.1, Aleshina O.O.2, Mamieva I.A.2
-
Мекемелер:
- Verechaguine AK School of Civil Engineering
- RUDN University
- Шығарылым: Том 20, № 2 (2024)
- Беттер: 146-158
- Бөлім: Analysis of thin elastic shells
- URL: https://journals.rcsi.science/1815-5235/article/view/325895
- DOI: https://doi.org/10.22363/1815-5235-2024-20-2-146-158
- EDN: https://elibrary.ru/DSRDSR
- ID: 325895
Дәйексөз келтіру
Толық мәтін
Аннотация
It is proved and illustrated that by taking the main frame of the surface, consisting of three plane curves placed in three coordinate planes, three different algebraic surfaces with the same rigid frame can be designed. For the first time, one three of new ruled surfaces in a family of five threes of ruled surfaces, formed on the basis of some shapes of hulls of river and see ships, which, in turn, are projected in the form of algebraic surfaces with a main frame of three superellipses or of three other plane curves, is under consideration in detail with a standpoint of differential geometry. The geometrical properties of the ruled surfaces taken as the middle surfaces of thin shells for industrial and civil engineering are presented. Analytical formulas for determination of force resultants with using the approximate momentless theory of shells of zero Gaussian curvature given by non-orthogonal conjugate curvilinear coordinates are offered for the first time. The results derived using these formulae will help to correct the results obtained by numerical methods.
Негізгі сөздер
Авторлар туралы
Gerard Gbaguidi Aisse
Verechaguine AK School of Civil Engineering
Email: gbaguidi.gerard@yahoo.fr
ORCID iD: 0000-0002-8557-1392
PhD of Technical Sciences, Director
Cotonou, Republic of BeninOlga Aleshina
RUDN University
Хат алмасуға жауапты Автор.
Email: xiaofeng@yandex.ru
ORCID iD: 0000-0001-8832-6790
SPIN-код: 6004-2422
Candidate of Technical Sciences, Assistant of the Department of Civil Engineering, Engineering Academy
Moscow, RussiaIraida Mamieva
RUDN University
Email: i_mamieva@mail.ru
ORCID iD: 0000-0002-7798-7187
SPIN-код: 3632-0177
Assistant of the Department of Civil Engineering, Academy of Engineering
Moscow, RussiaӘдебиет тізімі
- Krivoshapko S.N. Tangential developable and hydrodynamic surfaces for early stage of ship shape design. Ships and Offshore Struct. 2023;18(5):660-668. https://doi.org/10.1080/17445302.2022.2062165
- Krivoshapko S.N. Algebraic ship hull surfaces with a main frame from three plane curves in coordinate planes.RUDN Journal of Engineering Research. 2022;23(3):207-212. https://doi.org/10.22363/2312-8143-2022-23-3-207-212
- Karnevich V.V. Design of hydrodynamical surface by the frame from Lame curves on the example of submarinehull. RUDN Journal of Engineering Research. 2022;23 (1):30-37. https://doi.org/10.22363/2312-8143-2022-23-1-30-37
- Krivoshapko S.N., Aleshina O.O., Ivanov V.N. Static analysis of shells with middle surfaces containing the mainframe from three given superellipses. Structural Mechanics and Analysis of Constructions. 2022;6:18-27. https://doi.org/10.37538/0039-2383.2022.6.18.27
- Aleshina O.O. Geometry and static analysis of thin shells in the form of a diagonal translation surface of thevelaroidal type. Structural Mechanics of Engineering Constructions and Buildings. 2023;19(1):84-93. http://doi.org/10.22363/1815-5235-2023-19-1-84-93
- Weisstein E.W. Superellipse. From MathWorld - A Wolfram Web Resource. Available from: https://mathworld. wolfram.com/Superellipse.html (accessed: 12.05.2023)
- Mamieva I.A. Ruled algebraic surfaces with a main frame from three superellipses. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(4):387-395. https://doi.org/10.22363/1815-5235-2022-18-4-387-395
- Krivoshapko S.N., Christian A.B.H., Gil-oulbé M. Stages and architectural styles in design and building of shells and shell structures. Building and Reconstruction. 2022;4(102):112-131. https://doi.org/10.33979/2073-7416-2022-102-4112-131
- Krivoshapko S.N., Ivanov V.N. Encyclopedia of Analytical Surfaces. Springer International Publishing Switzerland, 2015.
- Sysoeva E.V. Scientific approaches to calculation and design of large-span structures. Vestnik MGSU [Monthly J. on Construction and Architecture]. 2017;12 2(101) :131-141. https://doi.org/10.22227/1997-0935.2017.2.131-141
- Goldenveizer A.L. Theory of Elastic Thin Shells, Published by Pergamon Press, New York, USA, 1961.
- Krivoshapko S.N., Razin A.D. Comparison of two systems of governing equations for the thin shell analysis. AIP Conference Proceedings. 2022;2559:020009. https://doi.org/10.1063/5.0099905
- Steigmann D.J., Bîrsan M., Shirani M. Lecture Notes on the Theory of Plates and Shells: Classical and Modern Developments. Part of the book series: Solid Mechanics and Its Applications (SMIA, volume 274). Springer; 2023. https://doi.org/10.1007/978-3-031-25674-5
- Tupikova E.M. Investigation of V.G. Rekatch’s method of stress-strain analysis of the shell of long shallow oblique helicoid form. Structural Mechanics and Analysis of Constructions. 2016;1:14-19.
- Markov I.J., Gabriel J.F. Spatial and structural aspects of polyhedral. Engineering Structures. 2001;23(1):4-11. https://doi.org/10.1016/S0141-0296(00)00016-X
- Dinkler D., Kowalsky U. Introduction to Finite Element Methods. Springer Vieweg Wiesbaden; 2024. https://doi.org/10.1007/978-3-658-42742-9
- Aleshina О., Cajamarca-Zuniga D., Ivanov V., Rekach F., Alborova L. Analytical and numerical stress state analysis of a shell with tangential developable middle surface. AIP Conference Proceedings. 2022;2559:020008. https:// doi.org/10.1063/5.0099513
- Aleshina O., Cajamarca D., Barbecho J. Numerical Comparative Analysis of a Thin-Shell Spatial Structure for the Candela’s Cosmic Rays Pavilion. Volume 174 of the Advances in the Astronautical Sciences Series. IAA/AAS SciTech Forum 2019 on Space Flight Mechanics and Space Structures and Materials. 25-27 June 2019, Moscow, Russia. 2019:741 (IAA-AAS-SciTech2019-064-AAS 19-1017)
- Ma Y.Q., Wang C.M., Ang K.K. Buckling of super ellipsoidal shells under uniform pressure. Thin Walled Struct. 2008;46(6):584-591. https://doi.org/10.1016/j.tws.2008.01.013
- Mele T.V., Rippmann M., Lachauer L., et al. Geometry-based understanding of structures. J. of the International Association for Shell and Spat. Structures. 2012;53(174):285-296.
- Flöry S., Pottmann H. Ruled surfaces for rationalization and design in architecture. Proceedings ACADIA. 2010;103-109. https://doi.org/10.52842/conf.acadia.2010.103
- Kamil M., Dagmar S. A method for creating ruled surfaces and its modifications. KoG. 2002;6 (6):59-66.
Қосымша файлдар
