Mathematical modeling of stress waves under concentrated vertical action in the form of a triangular pulse: Lamb’s problem

Capa

Citar

Texto integral

Resumo

The aim of the work. The problem of numerical simulation of longitudinal, transverse and surface waves on the free surface of an elastic half-plane is considered. Methods. To solve the non-stationary dynamic problem of elasticity theory with initial and boundary conditions, the finite element method in displacements was used. Using the finite element method in displacements, a linear problem with initial and boundary conditions was led to a linear Cauchy problem. A quasiregular approach to solving a system of second-order linear ordinary differential equations in displacements with initial conditions and to approximating the area under study is proposed. The method is based on the schemes: point, line and plane. The study area is divided by spatial variables into triangular and rectangular finite elements of the first order. According to the time variable, the study area is divided into linear end elements with two nodal points. The Fortran-90 algorithmic language was used in the development of the software package. Results. Some information is given about numerical modeling of elastic stress waves in an elastic half-plane with a concentrated wave action in the form of a Delta function. The estimated area under study has 12 008 001 nodal points. A system of equations consisting of 48 032 004 unknowns is solved. The change of elastic contour stress on the free surface of the half-plane at different points is shown. The amplitude of Rayleigh surface waves is significantly greater than the amplitudes of longitudinal, transverse, and other waves with a concentrated vertical action in the form of a triangular pulse on the surface of an elastic half-plane. After surface Rayleigh waves, a dynamic process is observed in the form of standing waves.

Sobre autores

Vyacheslav Musayev

Russian University of Transport; Moscow State University of Civil Engineering (National Research University); Mingachevir State University

Autor responsável pela correspondência
Email: musayev-vk@yandex.ru
ORCID ID: 0000-0003-4336-6785

Professor of the Department of Technosphere Safety of the RUT (MIIT), Professor of the Department of Integrated Safety in Construction of the NRU MGSU, Professor of the Department of Higher Mathematics of MSU (Azerbaijan), Doctor of Technical Sciences

9 Obraztsova St, bldg 9, Moscow, 127994, Russian Federation; 26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation; 21 Dilyara Alieva St, Mingachevir, AZ4500, Republic of Azerbaijan

Bibliografia

  1. Kolskij G. Volny napryazhenij v tverdyh telah [Stress waves in solids]. Moscow: Inostrannaya literatura Publ.; 1955. (In Russ.)
  2. Dejvis R. Volny napryazhenij v tverdyh telah [Stress waves in solids]. Moscow: Inostrannaya literatura Publ.; 1961. (In Russ.)
  3. Eringen A.C. Mechanics of continua. New York: John Wiley & Sons; 1967.
  4. Rihtmajer R., Morton K. Raznostnye metody resheniya kraevyh zadach [Difference methods for solving boundary value problems]. Moscow: Mir Publ.; 1972. (In Russ.)
  5. Zenkevich O. Metod konechnyh elementov v tekhnike [The finite element method in engineering]. Moscow: Mir Publ.; 1975. (In Russ.)
  6. Potter D. Vychislitel'nye metody v fizike [Computational methods in physics]. Moscow: Mir Publ.; 1975. (In Russ.)
  7. Novackij V. Teoriya uprugosti [Theory of elasticity]. Moscow: Mir Publ.; 1975. (In Russ.)
  8. Timoshenko S.P., Guder D. Teoriya uprugosti [Theory of elasticity]. Moscow: Nauka Publ.; 1975. (In Russ.)
  9. Guz A.N., Kubenko V.D., Cherevko M.A. Difrakciya uprugih voln [Diffraction of elastic waves]. Kiev: Naukova Dumka Publ.; 1978. (In Russ.)
  10. Segerlind L. Primenenie metoda konechnyh elementov [Application of the finite element method]. Moscow: Mir Publ.; 1979. (In Russ.)
  11. Bate K., Vilson E. Chislennye metody analiza i metod konechnyh elementov [Numerical methods of analysis and the finite element method]. Moscow: Strojizdat Publ.; 1982. (In Russ.)
  12. Zenkevich O., Morgan K. Konechnye elementy i approksimaciya [Finite elements and approximation]. Moscow: Mir Publ.; 1986. (In Russ.)
  13. Han X. Teoriya uprugosti [Theory of elasticity]. Moscow: Mir Publ.; 1988. (In Russ.)
  14. Musayev V.K. Testing of stressed state in the structure-base system under non-stationary dynamic effects. Proceedings of the Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St. Louis: University of Missouri – Rolla; 1991. p. 2086–2097. https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=3626&context=icrageesd
  15. O’Rourke M.J., Liu X. Response of buried pipelines subject to earthquake effects. Buffalo: Multidisciplinary Center for Earthquake Engineering Research (MCEER); 1999.
  16. Kuznetsov S.V. Seismic waves and seismic barriers. International Journal for Computational Civil and Structural Engineering. 2012;8(1):87–95. http://dx.doi.org/10.1134/S1063771011030109
  17. Nemchinov V.V. Diffraction of a plane longitudinal wave by spherical cavity in elastic space. International Journal for Computational Civil and Structural Engineering. 2013;9(1):85–89.
  18. Nemchinov V.V. Numerical methods for solving flat dynamic elasticity problems. International Journal for Computational Civil and Structural Engineering. 2013;9(1):90–97.
  19. Prasad B.B. Fundamentals of soil dynamics and earthquake engineering. Delhi: PHI Learning; 2013.
  20. Kuznetsov S.V., Terenteva E.O. Lamb problems: a review and analysis of methods and approaches. International Journal for Computational Civil and Structural Engineering. 2014;10(1):78–93.
  21. Musayev V.K. Estimation of accuracy of the results of numerical simulation of unsteady wave of the stress in deformable objects of complex shape. International Journal for Computational Civil and Structural Engineering. 2015;11(1):135–146.
  22. Dikova E.V. Reliability of the numerical method, algorithm and software package of V.K. Musayev in solving the problem of propagation of plane longitudinal elastic waves (ascending part-linear, descending part-quarter of a circle) in a half-plane. Mezhdunarodnyj Zhurnal Eksperimental'nogo Obrazovaniya. 2016;(12–3):354–357. (In Russ.)
  23. Starodubcev V.V., Akatev S.V., Musaev A.V., Shiyanov S.M., Kurancov O.V. Modeling of elastic waves in the form of a pulsed action (the ascending part is a quarter of a circle, the descending part is a quarter of a circle) in a half-plane using the numerical method of V.K. Musayev. Problemy Bezopasnosti Rossijskogo Obshchestva. 2017;(1):36–40. (In Russ.)
  24. Starodubcev V.V., Akatev S.V., Musaev A.V., Shiyanov S.M., Kurancov O.V. Simulation using the numerical method of V.K. Musaev of non-stationary elastic waves in the form of a pulsed action (the ascending part is a quarter of a circle, the middle part is horizontal, the descending part is linear) in a continuous deformable medium. Problemy Bezopasnosti Rossijskogo Obshchestva. 2017;(1):63–68. (In Russ.)
  25. Kurancov V.A., Starodubcev V.V., Musaev A.V., Samojlov S.N., Kuznecov M.E. Simulation of the momentum (first branch: ascending part – quarter circle, descending part – linear; second branch: triangle) in an elastic half-plane using the numerical method of V.K. Musayev. Problemy Bezopasnosti Rossijskogo Obshchestva. 2017;(2):51–55. (In Russ.)
  26. Avershyeva A.V., Kuznetsov S.V. Numerical simulation of Lamb wave propagation isotropic layer. International Journal for Computational Civil and Structural Engineering. 2019;15(2):14–23. https://doi.org/10.22337/2587-9618-2019-15-2-14-23
  27. Musayev V.K. Mathematical modeling of non-stationary elastic waves stresses under a concentrated vertical exposure in the form of delta functions on the surface of the half-plane (Lamb problem). International Journal for Computational Civil and Structural Engineering. 2019;15(2):111–124. https://doi.org/10.22337/2587-9618-2019-15-2-111-124
  28. Israilov M.S. Theory of sound barriers: diffraction of plane, cylindrical and spherical waves on a “hard-soft” half plane. Mechanics of Solids. 2019;54(3):412–419. https://doi.org/10.3103/S0025654419020043
  29. Musayev V.K. Mathematical modeling of unsteady elastic stress waves in a console with a base (half-plane) under fundamental seismic action. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(6):477–482. http://dx.doi.org/10.22363/1815-5235-2019-15-6-477-482

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».