Анализ повреждаемости и оценка влияния повреждений на работу несущих конструкций нефтеперерабатывающих трубчатых печей
- Авторы: Голиков А.В.1, Субботин Д.И.1
-
Учреждения:
- Волгоградский государственный технический университет
- Выпуск: Том 16, № 3 (2020)
- Страницы: 193-202
- Раздел: Расчет и проектирование строительных конструкций
- URL: https://journals.rcsi.science/1815-5235/article/view/325614
- DOI: https://doi.org/10.22363/1815-5235-2020-16-3-193-202
- ID: 325614
Цитировать
Полный текст
Аннотация
Актуальность. По причине широкого распространения на практике в качестве объекта исследования данной работы выбраны печи трубчатой конструкции. В статье приведен анализ повреждений несущих конструкций нефтеперерабатывающих трубчатых печей. Установлены причины возникновения повреждений и физическая природа их развития. По результатам натурных обследований установлено, что около 10 % печей эксплуатируется с повреждениями в виде значительных искривлений несущих конструкций, которые развились в результате взрыва газовоздушной смеси и технологического продукта внутри пространства печи. Целями исследования являются анализ повреждаемости и оценка влияния повреждений на работу несущих конструкций печей. Методы. Основные результаты получены путем статического численного анализа пространственных моделей каркасов печей в программном комплексе ЛИРА-САПР. Данный комплекс относится к классу программных продуктов, реализующих метод конечных элементов. Результаты. Расчет серии моделей сооружений позволил определить влияние повреждений на работу несущих конструкций печи. На основе анализа данных расчета моделей трубчатых печей с повреждениями и сопоставления результатов расчета моделей печей с повреждениями конструкций, выявленными при проведении обследований, предложены пути оптимизации конструктивных решений промышленной печи. Проведенное исследование показало необходимость совершенствования конструкции трубчатых печей в направлении модернизации технологии и конструктивной формы несущего каркаса печи.
Ключевые слова
Об авторах
Александр Владимирович Голиков
Волгоградский государственный технический университет
Автор, ответственный за переписку.
Email: alexandr_golikov@mail.ru
кандидат технических наук, доцент, кафедра строительных конструкций, оснований и надежности сооружений
Российская Федерация, 400005, Волгоград, проспект имени Ленина, 28Дмитрий Игоревич Субботин
Волгоградский государственный технический университет
Email: alexandr_golikov@mail.ru
магистрант, кафедра строительных конструкций, оснований и надежности сооружений
Российская Федерация, 400005, Волгоград, проспект имени Ленина, 28Список литературы
- Timoshenko S.P., Gere J.M. Theory of Elastic Stability. McGraw; 1963.
- Volmir A.S. Nelineinaya dinamika plastinok i obolochek [Nonlinear dynamics of plates and shells]. Moscow: Nauka Publ.; 1972. (In Russ.)
- Weinberg D.V., Weinberg E.D. Raschet plastin [Calculation of plates]. Kiev: Budivelnik Publ.; 1970. (In Russ.)
- Evzerov I.D. Stability problems for rods and plates. Engineering and Construction Journal. 2014;1(45):6–11. DOI: 10.5862 / MCE.45.2. (In Russ.)
- Lalin V.V., Rybakov V.A., Morozov S.A. The study of finite elements for the calculation of thin-walled bar systems. Engineering and Construction Journal. 2012;1(27): 53–73. DOI: 10.5862 / MCE.27.7. (In Russ.)
- Lalin V.V., Rybakov V.A. Finite elements for the calculation of enclosing structures from thin-walled profiles. Engineering and Construction Journal. 2011;8(26):69–80. DOI: 10.5862 / MCE.26.11. (In Russ.)
- Dugué J. Fired equipment safety in the oil & gas industry. A review of changes in practices over the last years. 11th European Conference on Industrial Furnaces and Boilers, INFUB-11. Energy Procedia. 2017;120:2–19. https://doi.org/10.1016/j.egypro.2017.07.151
- Lyashonok S.Yu., Dyachkova S.G. Obzor konstruktivnih osobennostei trubchatih pechei [Review of design features of tubular furnaces]. Bulletin of ISTU. 2013;12(83): 213–218. (In Russ.)
- Entus N.R., Sharikhin V.V. Trubchatie pechi v neftepererabativayuschei i neftehimicheskoi promishlennosti [Tube furnaces in the refining and petrochemical industries]. Moscow; 1987. (In Russ.)
- VNIKTIneftekhimoborudovanie. Metodika opredeleniya ostatochnogo resursa trubchatih pechei neftepererabativayuschih neftehimicheskih i himicheskih proizvodstv [Methodology for determining the residual life of tube furnaces in oil refining, petrochemical and chemical industries]. Volgograd; 1998. (In Russ.)
- VNIKTIneftekhimoborudovanie. DiOR-05. Metodika diagnostirovaniya tehnicheskogo sostoyaniya i opredeleniya ostatochnogo resursa tehnologicheskogo oborudovaniya neftepererabativayuschih neftehimicheskih proizvodstv [Technique for diagnosing the technical condition and determining the residual resource of technological equipment of oil refining, petrochemical industries]. Volgograd; 2006. (In Russ.)
- ISO 13577-2:2014. Industrial furnaces and associated processing equipment. Safety. Part 2: Combustion and fuel handling systems (p. 102). 2014.
- Kazenov A.A., Filatov G.V., Khanin Yu.D., Meshkov V.I. Tube furnaces: Catalog. 5th ed. Moscow: TSINTIHIMNEFTEMASH Publ.; 1998. (In Russ.)
- Manual for the inspection and design of buildings and structures subject to explosive loads. Moscow; 2000. (In Russ.)
- Baker W., Cox P., Westine P. et al. Vzrivnie yavleniya. Ocenka i posledstviya [Explosive phenomena. Assessment and consequences]. Moscow: Mir Publ.; 1986. (In Russ.)
- Beschastnov M.V. Promishlennie vzrivi. Ocenka i preduprejdenie [Industrial explosions. Assessment and warning]. Moscow: Khimiya Publ.; 1991. (In Russ.)
- SP 20.13330.2016. SNiP 2.07.07_81*. Nagruzki i vozdeistviya [Loads and impacts]. Moscow: Standartinform Publ.; 2016. (In Russ.)
- SP 16.13330.2017. SNiP II_23_81*. Stalnie konstrukcii [Steel structures]. Moscow: Standartinform Publ.; 2017. (In Russ.)
- SP 296.1325800.2017. Zdaniya i soorujeniya. Osobie vozdeistviya [Buildings and structures. Special effects]. Moscow: Standartinform Publ.; 2017. (In Russ.)
- SP 266.1325800.2016. Konstrukcii stalejezobetonnie. Pravila proektirovaniya [Steel-reinforced concrete structures. The rules of design]. Moscow: Standartinform Publ.; 2017. (In Russ.)
- Işık E., Özdemir M. Performance based assessment of steel frame structures by different material models. Int. J. Steel Struct. 2017;17:1021–1031. https://doi.org/10.1007/ s13296-017-9013-x
- Hoseini Vaez S.R., Sarvdalir S. Reliability-Based Optimization of One-Bay 2-D Steel Frame. KSCE J. Civ. Eng. 2018;22:2433–2440. https://doi.org/10.1007/s12205-017-1881-2
- Pourasil M.B., Mohammadi Y., Gholizad A. A proposed procedure for progressive collapse analysis of common steel building structures to blast loading. KSCE J. Civ. Eng. 2017;21:2186–2194. https://doi.org/10.1007/s12205-017-0559-0.
- Abdollahzadeh G., Shalikar R. Retrofitting of Steel Moment-Resisting Frames under Fire Loading against Progressive Collapse. Int. J. Steel Struct. 2017;17:1597–1611. https://doi.org/10.1007/s13296-017-1225-6
- Naji A. Sensitivity and fragility analysis of steel moment frames subjected to progressive collapse. Asian J. Civ. Eng. 2018;19:595–606. https://doi.org/10.1007/s42107- 018-0045-0
Дополнительные файлы
