Buckling of Steel Conical Panels Reinforced with Stiffeners

Cover Page

Cite item

Full Text

Abstract

Conical shells and their panels are important elements of building structures, but have not been studied sufficiently. This paper explores buckling of truncated steel conical panels reinforced with an orthogonal grid of stiffener plates. The panels are simply supported and are subjected to external uniformly distributed transverse load acting normal to the surface. A geometrically nonlinear mathematical model that takes into account lateral shearing is used. Two options of describing the effect of stiffener plates are considered: the refined discrete method and the method of structural anisotropy (the stiffness of the plates is “smeared”). The computational algorithm is based on the Ritz method and the method of continuing the solution using the best parameter. The algorithm is implemented using Maple analytical computing software. The values of critical buckling loads were obtained for two cases of conical panels with different stiffener options. The load-deflection curves are presented. The convergence of the methods for describing the effect of stiffeners with the increase in their number is discussed. It was found that for conical panels, when choosing a small number of unknown coefficients in the approximation, the value of the critical load may be “overshot”, and it is necessary to select a larger number of unknowns compared to cylindrical panels or flat shells of double curvature.

About the authors

Alexey A. Semenov

Saint Petersburg State University of Architecture and Civil Engineering

Author for correspondence.
Email: sw.semenov@gmail.com
ORCID iD: 0000-0001-9490-7364

Candidate of Technical Science, Associate Professor of the Department of Information Systems and Technologies

Saint Petersburg, Russian Federation

Lidiia N. Kondratieva

Saint Petersburg State University of Architecture and Civil Engineering

Email: kondratjevaln@yandex.ru
ORCID iD: 0000-0001-6174-5565

Doctor of Technical Science, Professor of the Department of Geotechnical Engineering

Saint Petersburg, Russian Federation

Vladimir N. Glukhikh

Saint Petersburg State University of Architecture and Civil Engineering

Email: vnglukhikh@mail.ru
ORCID iD: 0000-0002-9912-506X

Doctor of Technical Science, Professor of the Department of Structural Mechanics

Saint Petersburg, Russian Federation

References

  1. Krivoshapko S.N. Shell structures and shells at the beginning of the 21st century. Structural Mechanics of Engineering Constructions and Buildings. 2021;17:553-561. https://doi.org/10.22363/1815-5235-2021-17-6-553-561
  2. Sysoeva E.V., Trushin S.I. History of the design and construction of circuses in Russia. Construction and Reconstruction. 2017:95-110. (In Russ.) EDN: ZAGQEN
  3. Ren D., Qu Y., Yang L. The Analysis of wind vibration coefficient of long-span dome structures with different thickness. earth and space. American Society of Civil Engineers. 2012:1196-204. https://doi.org/10.1061/9780784412190.130
  4. Razov I., Sokolov V., Dmitriev A., Ogorodnova J. Parametric vibrations of the underground oil pipeline. E3S Web of Conferences. 2022;363:01038. https://doi.org/10.1051/e3sconf/202236301038
  5. Karpov V., Kondratyeva L. Justification of Using Delta-Functions in the Theory of Shells Featuring Irregularities. Applied Mechanics and Materials. 2015;725-726:796-801. https://doi.org/10.4028/www.scientific.net/AMM.725-726.796
  6. Manuylov G.A., Kositsyn S.B., Begichev M.M. On the phenomenon of loss of stability of a longitudinally compressed circular cylindrical shell. Part 1: On the post-critical equilibrium of the shell. International Journal of Civil and Structural Analysis. 2016;12:58-72. (In Russ.) https://doi.org/10.22337/1524-5845-2016-12-3-58-72
  7. Gelyukh P.A., Pashkov A.V., Ivanov S.A. Numerical study of the stability of a flat ribbed cylindrical shell using a variational-difference approach. Natural and Technical Sciences. 2021:187-95. (In Russ.) https://doi.org/10.25633/ETN.2021.06.11
  8. Waqas H.M., Shi D., Khan S.Z., Helal M., Fathallah E. Analytical modeling of cross-ply cylindrical composite submersible shell with elastic buckling using first order shear deformation theory. Frontiers in Materials. 2022;9:1004752. https://doi.org/10.3389/fmats.2022.1004752
  9. Taraghi P., Showkati H. Investigation of the Buckling Behavior of Thin-Walled Conical Steel Shells Subjected to a Uniform External Pressure. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 2019;43:635-648. https://doi.org/10.1007/s40996-018-0213-1
  10. Zarei M., Rahimi G.H., Hemmatnezhad M., Pellicano F. On the buckling load estimation of grid-stiffened composite conical shells using vibration correlation technique. European Journal of Mechanics - A/Solids. 2022;96:104667. https://doi.org/10.1016/j.euromechsol.2022.104667
  11. Salmanizadeh A., Kiani Y., Eslami M.R. Vibrations of functionally graded material conical panel subjected to instantaneous thermal shock using Chebyshev-Ritz route. Engineering Analysis with Boundary Elements. 2022;144:422-432. https://doi.org/10.1016/j.enganabound.2022.08.040
  12. Sofiyev A.H. Review of research on the vibration and buckling of the FGM conical shells. Composite Structures. 2019;211:301-317. https://doi.org/10.1016/j.compstruct.2018.12.047
  13. Bakulin V.N. Model for a refined calculation of the stress-strain state of three-layer conical irregular shells of rotation. Applied Mathematics and Mechanics. 2019;83:282-294. (In Russ.) https://doi.org/10.1134/S0032823519020036
  14. Cho S.-R., Muttaqie T., Do Q.T., Park S.H., Kim S.M., So H.Y., et al. Experimental study on ultimate strength of steel-welded ring-stiffened conical shell under external hydrostatic pressure. Marine Structures. 2019;67:102634. https://doi.org/10.1016/j.marstruc.2019.102634
  15. Dung D.V., Chan D.Q. Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT. Composite Structures. 2017;159:827-841. https://doi.org/10.1016/j.compstruct.2016.10.006
  16. Karasev A.G. Initial imperfection influence on the buckling load of closed elastic isotropic shallow conical shells. Mathematics and Mechanics of Solids. 2016;21:444-453. https://doi.org/10.1177/1081286514526082
  17. Gupta A.K., Patel B.P., Nath Y. Progressive damage of laminated cylindrical/conical panels under meridional compression. European Journal of Mechanics - A/Solids. 2015;53:329-341. https://doi.org/10.1016/j.euromechsol.2015. 05.013
  18. Shadmehri F., Hoa S.V., Hojjati M. Buckling of conical composite shells. Composite Structures. 2012;94:787 https://doi.org/10.1016/j.compstruct.2011.09.016
  19. Lavrenčič M., Brank B. Simulation of shell buckling by implicit dynamics and numerically dissipative schemes. Thin-Walled Structures. 2018;132:682-699. https://doi.org/10.1016/j.tws.2018.08.010
  20. Bakulin V.N., Nedbay A.Ya. Dynamic stability of a three-layer cylindrical shell, reinforced with annular ribs and a hollow cylinder, under the action of external pulsating pressure. Reports of the Russian Academy of Sciences Physics, Technical Sciences. 2021;498:46-52. (In Russ.) https://doi.org/10.31857/S2686740021030056
  21. Medvedsky A.L., Martirosov M.I., Khomchenko A.V. Dynamics of a reinforced composite panel with mixed stacking of monolayers with internal damage under transient effects. Bulletin of Bryansk State Technical University 2019: 35-44. (In Russ.) https://doi.org/10.30987/article_5d2d9231dd5853.89951988
  22. Latifov F.S., Yusifov M.Z., Alizadeh N.I. Free vibrations of inhomogeneous orthotropic cylindrical shells reinforced with transverse ribs and filled with liquid. Applied Mechanics and Technical Physics. 2020;61:198-206. (In Russ.) https://doi.org/10.15372/PMTF20200321
  23. Kusyakov A.Sh. Probabilistic analysis of reinforced cylindrical composite shells. Problems of Mechanics and Control: Nonlinear Dynamic Systems. 2021:16-25. (In Russ.) EDN: DSTTWV
  24. Dudchenko A.A., Sergeev V.N. Nonlinear equilibrium equations for a conical shell supported by a discrete set of frames. Bulletin of the Perm National Research Polytechnic University Mechanics. 2017:78-98. (In Russ.) https://doi.org/10.15593/perm.mech/2017.2.05
  25. Semenov A.A. A refined discrete method for calculating reinforced orthotropic shells. PNRPU Mechanics Bulletin. 2022:90-102. (In Russ.) https://doi.org/10.15593/perm.mech/2022.4.09
  26. Semenov A.A., Leonov S.S. Method of continuous continuation of the solution using the best parameter when calculating shell structures. Scientists Notes of Kazan University Series: Physical and Mathematical Sciences. 2019; 161:230-49. (In Russ.) https://doi.org/10.26907/2541-7746.2019.2.230-249

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».