A method for strengthening arched buildings with insufficient bearing capacity of supports for the perception of the strut

Cover Page

Cite item

Full Text

Abstract

A new way to strengthen arched buildings with insufficient bearing capacity of the supports for the perception of the strut is proposed. That method can be implemented in the conditions of architectural and structural solutions of buildings with the presence of zones which prevent the traditional placement of puffs. There are no research results on this problem in the literature. On the example of a frameless arched building with insufficient bearing capacity of the supports for the perception of the strut, the application of the anticipated reinforcement method is considered with the reduction of two options for anchoring the supports of the arched building with puffs installed for the perception of the strut to semi-buried and sunken ground anchor. For the arched building under consideration, theoretical studies were carried out to determine the prestress value in the installed puffs, at which the load-bearing capacity of the arched building is provided for the variant of the asymmetric snow design load. The significance of the obtained results for the construction industry is that for the first time a method of strengthening arched buildings with insufficient bearing capacity of supports for the perception of the strut is suggested. The projected method of reinforcement is an effective, novel way to increase the load-bearing capacity of structures and supports of arched buildings and can be used in the conditions of architectural and structural solutions of buildings with the presence of zones that prevent the traditional placement of puffs.

About the authors

Damir M. Khusainov

Kazan State University of Architecture and Engineering

Email: xdmt@mail.ru
ORCID iD: 0000-0002-1671-7546

Candidate of Technical Sciences, Associate Professor of the Departments of Metal Construction and Testing of Structures

1 Zelenaya St, Kazan, 1420043, Russian Federation

Aydar F. Salimov

Kazan State University of Architecture and Engineering

Email: salimovaf1962@mail.ru
ORCID iD: 0000-0003-0295-576X

Candidate of Technical Sciences, senior lecturer of the Departments of Metal Construction and Testing of Structures

1 Zelenaya St, Kazan, 1420043, Russian Federation

Albina G. Khabibulina

Kazan State University of Architecture and Engineering

Author for correspondence.
Email: blago2000@mail.ru
ORCID iD: 0000-0003-2928-2884

Candidate of Economical Sciences, Associate Professor of the Department of Architecture

1 Zelenaya St, Kazan, 1420043, Russian Federation

References

  1. Sheidaii M.R., Bayrami S., Babaei M. Collapse behavior of single-layer space barrel vaults under non-uniform support settlements. International Journal of Steel Structures. 2013;13(4):723-730. http://doi.org/10.1007/s13296-013-4013-y
  2. Karimi S. Study and comparison arch at framework modern materials-case study: Iran. Journal of Fundamental and Applied Sciences. 2017;9(1S):573-596. http://doi.org/10.4314/jfas.v9i1s.713
  3. Dallemule M. Equivalent imperfections in arched structures. Slovak Journal of Civil Engineering. 2015;23(3):9-15. http://doi.org/10.1515/sjce-2015-0012
  4. Flager F., Soremekun G., Adya A., Shea K., Haymaker J., Fischer M. Fully constrained design: a general and scalable method for discrete member sizing optimization of steel truss structures. Computers and Structures. 2014;140:55-65. http://doi.org/10.1016/j.compstruc.2014.05.002
  5. Kyoungsoo L., Sang-Eul H. Analysis of the stress-erection process of Strarch frames considering the joint connection properties. Journal of Constructional Steel Research. 2014;92:195-210. http://doi.org/10.1016/j.jcsr.2013.09.011
  6. Sayanov S.F., Salakhutdinov M.A. Development of trusses with belts made of pipes of polyhedral cross-section. Conference Proceedings: Engineering Personnel are the Future of Russia’s Innovative Economy. Yoshkar-Ola: Volga State University of Technology Publ.; 2015. p. 160-161.
  7. Nomikos P.P., So anos A.I., Sakkas K.M., Choumanidis D., Delendas S. Nonlinear simulation of lattice girder segment tests. Tunnelling and Underground Space Technology. 2013;38:180-188. http://doi.org/10.1016/j.tust.2013.06.006
  8. Kalininа А.A., Kurbanov A.I., Tsaritova N.G. Possibilities of architectural and structural forming of spatial forms from rod arches. IOP Conference Series: Materials Science and Engineering. 2021;1079:(042041). http://doi.org/10.1088/1757-899X/1079/4/042041
  9. Chen J.-H. A study on the equivalent static wind loadings on the arched roof frames of low-rise buildings in atmospheric boundary layers. Applied Mechanics and Materials. 2012;121-126:3113-3117. http://doi.org/10.4028/www.scientific.net/AMM.121-126.3113
  10. Afshana S., Theofanousb M., Wangc J., Gkantoud M., Gardner L. Testing, numerical simulation and design of prestressed high strength steel arched trusses. Engineering Structures. 2019;183:510-522. http://doi.org/10.1016/j.engstruct.2019.01.007
  11. Gaydzhurov P.P., Iskhakova E.R., Tsaritova N.G. Study of stress-strain states of a regular hinge-rod constructions with kinematically oriented shape change. International Journal for Computational Civil and Structural Engineering. 2020;16(1):38-47. http://doi.org/10.22337/2587-9618-2020-16-1-38-47
  12. Sun W., Zhou W. Test investigation on stiffness performance of steel structures composed of cold-roller-bent pipes. Applied Mechanics and Materials. 2012;271-272:519-523. http://doi.org/10.4028/www.scientific.net/AMM.271-272.519
  13. Pantazia V.S., Sophianopoulos D.S. A unified catastrophe theory approach for the in-plane buckling of steel arches under point gravitational loading. Special Issue: Proceedings of Eurosteel. 2017;1(2-3):1399-1406. http://doi.org/10.1002/cepa.182
  14. Gimena F.N., Gonzaga P., Gimena L. Analytical formulation and solution of arches de ned in global coordinates. Engineering Structures. 2014;60:189-198. http://doi.org/10.1016/j.engstruct.2013.12.004
  15. Castellano S. Loads interaction domains methodology for the design of steel greenhouse structures. Journal of Agricultural Engineering. 2007;38(1):21-29. http://doi.org/10.4081/jae.2007.1.21
  16. Eroglu U., Paolone A., Ruta G. Exact closed-form static solutions for parabolic arches with concentrated damage. Archive of Applied Mechanics. 2020;90:673-689. http://doi.org/10.1007/s00419-019-01633-x
  17. Dmitriev I.K. Research of the deformation of the brick-cable arch. Structural Mechanics of Engineering Constructions and Buildings. 2015;(5):72-77.
  18. Dmitriev I.K. Determination of destructive forces in a rod-cable arch. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(3):243-248. http://doi.org/10.22363/1815-5235-2019-15-3-243-248
  19. Kirsanov M.N. Calculation of the deflection of an arched truss with suspended elements depending on the number of panels. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(3):179-184. http://doi.org/10.22363/1815-5235-2020-16-3-179-184
  20. Wells M. Terminal 3 roof design and construction at Shenzhen Bao’an international airport, China. Civil Engineering. 2015;168(1):19-24. http://doi.org/10.1680/cien.14.00044
  21. Rybakov V., Jos V., Raimova I., Kudryavtsev K. Modal analysis of frameless arches made of thin-walled steel profiles. IOP Conference Series: Materials Science and Engineering. 2020;883:(012197). http://doi.org/10.1088/1757-899X/883/1/012197
  22. Liu Q.X., Zhao Y. Study on common problem and the design of granary railway canopy. Applied Mechanics and Materials. 2012;204-208:1034-1039. http://doi.org/10.4028/www.scientific.net/AMM.204-208.1034
  23. Kamalov A.Z., Khamidullina A.A. To the question of research of the stress strain state and stability arched constructions. Izvestiya KGASU. 2012;(4(22)):130-138.
  24. Lingyao L., Shichang H., Xuhui H., Haiquan J. Experimental study on wind force coefficient of a truss arch tower with multiple skewbacks. Advances in Structural Engineering. 2020;23(12):2614-2625. http://doi.org/10.1177/1369433220916935
  25. Bezsalyi V.M., Bannikov D.O. Efficiency of thin-walled galvanized profiles for arch elements. Bridges and Tunnels. Theory Research Practice. 2019;16:20-29. http://doi.org/10.15802/bttrp2019/189428
  26. Kuznetsov I.L., Isaev A.V., Gimranov L.R. The causes of collapse of 30 m span frameless arch structure. Izvestiya KGASU. 2011;(4(18)):166-170.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».