Determination of natural vibration frequencies of reinforced cylindrical shell

Cover Page

Cite item

Full Text

Abstract

Free vibrations of a reinforced cylindrical shell filled with liquid are investigated. The case of an orthotropic shell is considered when the cord filament is placed symmetrically with respect to the meridian of the shell. The motion of a fluid is potential and is described by a wave equation. The fluid moves without separation from the walls of the cylinders. The fluid pressure is taken into account in the equations of motion of the shells, and the velocities of the fluid and the shell are equalized at the boundaries. Representing a solution in a harmonic form reduces to a system of transcendental equations. Comparison of the solutions of the problems without a liquid and with a liquid shows the dependence of the frequency of the system without a liquid at the frequency of the system with the liquid. An inverse method is proposed for solving the equation. The inverse method for solving the problem has made it possible to construct a more accurate frequency spectrum of free oscillations of the system. For some values of the system parameters, the natural frequencies of the cylinder are determined.

About the authors

Mexseti Akif Rustamova

Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan

Author for correspondence.
Email: mehsetir@gmail.com
ORCID iD: 0000-0001-5192-1166

Candidate of Physical and Mathematical Sciences, leading researcher, Associate Professor, Department of Wave Dynamics, Institute of Mathematics and Mechanics

9 B. Vahabzade St, Baku, AZ1141, Azerbaijan Republic

References

  1. Filippov S.B. Using the Fourier series for analysis of free vibrations of a cylindrical shell rotating on rollers. Vestnik of St Petersburg University. Mathematics. Mechanics. Astronomy. 2018;5(2):321–333. (In Russ.) https://doi.org/10.21638/11701/spbu01.2018.212
  2. Leizerovich G.S., Seregin S.V. Free vibrations of circular cylindrical shells with a small added concentrated mass. J. Appl. Mech. Tech. Phy. 2016;57:841–846. https://doi.org/10.1134/S0021894416050102
  3. Abedini Baghbadorani A., Kiani Y. Free vibration analysis of functionally graded cylindrical shells reinforced with grapheme platelets. Composite Structures. 2021;276:114546. https://doi.org/10.1016/j.compstruct.2021.114546
  4. Ghasemi A.R., Meskini M. Investigations on dynamic analysis and free vibration of FGMs rotating circular cylindrical shells. SN Appl. Sci. 2019;1:301. https://doi.org/10.1007/s42452-019-0299-5
  5. Talebitooti M., Ghasemi M., Hosseini S.M. Vibration analysis of functionally graded cylindrical shells with different boundary conditions subjected to thermal loads. Journal of Computational and Applied Research in Mechanical Engineering. 2017;6(2):103–114.
  6. Agalarov J.G., Seyfullaev A.I. Free vibrations of a spherical shell with an elastic filler. Structural Mechanics of Engineering Constructions and Buildings. 2015;3:74–80. (In Russ.)
  7. Sejfullaev A.I., Novruzova K.A. Oscillations of a longitudinally reinforced orthotropic cylindrical shell filled with a viscous fluid. Eastern-European Journal of Enterprise Technologies. 2015;3(7(75)):29–33. (In Russ.) https://doi.org/10.15587/1729-4061.2015.44393
  8. Latifov F.S., Yusifov M.Z., Alizade N.I. Free vibrations of heterogeneous orthotropic cylindrical shells reinforced by annular ribs and filled by fluid. Journal of Applied Mechanics and Technical Physics. 2020;61:486–493. https://doi.org/10.1134/S0021894420030219
  9. Prakash V.S., Sonti V.R. Asymptotic expansions for the structural wavenumbers of isotropic and orthotropic fluid-filled circular cylindrical shells in the intermediate frequency range. Journal of Sound and Vibration. 2013;332(16):3696–3705. https://doi.org/10.1016/j.jsv.2013.02.025
  10. Seyfullayev A.I., Rustamova M.A., Agasiev S.R. Free oscillations of two concentrically located cylindrical shells with a fluid between them. International Journal of Engineering and Innovative Technology. 2014;3(10):33–37.
  11. Bochkarev S.A., Lekomcev S.V., Senin A.N. Numerical modeling of eccentric cylindrical shells partially filled with a fluid. Journal of Samara State Technical University. Series: Physical and Mathematical Sciences. 2020; 24(1):95–115. (In Russ.) https://doi.org/10.14498/vsgtu1746
  12. Agalarov J.G., Rustamova M.A., Seyfullayev A.I. The movement of a vertical cylinder as a result of water waves. Bulletin of Modern Science. 2017;2:7–15. (In Russ.)
  13. Filippov A.P. Oscillations of deformable systems. Moscow: Mashinostroenie Publ.; 1970. (In Russ.)
  14. Ho You J., Inaba K. Fluid-structure interaction in water-filled thin pipes of anisotropic composite materials. Journal of Fluids and Structures. 2013;36:162–173. https://doi.org/10.1016/j.jfluidstructs.2012.08.010

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».