Experimental study of elastic-plastic deformation of a cylindrical shell made of steel 45

Cover Page

Cite item

Full Text

Abstract

Relevance. The use of shells as thin-walled structures for various industries is very diverse. Spherical shells are widely used in the aircraft industry, circular cylindrical shells are used in the oil and gas industry, and more than 30 analytical forms of shells have been used in the construction industry. All elements of shell structures are undoubtedly subject to various strength calculations. Also, a separate role in the study is occupied by the experimental part, which confirms or refutes the calculated equations, this indicates the undoubted perspective and relevance of modeling the loading of shell structures. The aim of the study is to assess the condition of a thin-walled shell under three-parameter loading by tensile, compression and torsion forces. Methods. Experimental studies on the deformation of shells carried out in laboratory conditions on prototypes made of steel 45 GOST 1050-2013 are presented, and the loading conditions of the sample are modeled, similar to the possible conditions for applying loads to existing structures. Results. Experimental diagrams of deformation of the sample material in various planes are given, the development of deformation of the shell after applying joint efforts of stretching and torsion, as well as compression and torsion to the destruction of the material is estimated. For the relevance of the conducted experiment, a real design has been selected, which, when certain conditions are created, can experience appropriate experimental loads.

About the authors

Stepan V. Cheremnykh

Tver State Technical University

Author for correspondence.
Email: cheremnykh_s.v@mail.ru
ORCID iD: 0000-0002-4620-117X

Candidate of Technical Sciences, senior lecturer of the Department of Structures

22 Af. Nikitina Naberezhnaya, Tver, 170026, Russian Federation

References

  1. Bochkarev S.A., Lekomtsev S.V., Matveenko V.P., Senin A.N. Hydroelastic stability of partially filled coaxial cylindrical shells. Acta Mechanica. 2019;230(11):3845-3860. http://doi.org/10.1007/s00707-019-02453-4
  2. Burzyński S. On FEM analysis of cosserat-type stiffened shells: static and stability linear analysis. Continuum Mechanics and Thermodynamics. 2021;33:943-968. http://doi.org/10.1007/s00161-020-00928-7
  3. Safarov I.I., Kulmuratov N.R., Ishmamatov M.R., Xalilov Sh.F., Nuriddinov B. Stability of ribbed viscoelastic geometric nonlinear conic shells under dynamic loading. Theoretical & Applied Science. 2020;(2(82)):355-361. http://doi.org/10.15863/TAS.2020.02.82.58
  4. Van Dung D., Nga N.T., Vuong P.M. Nonlinear stability analysis of stiffened functionally graded material sandwich cylindrical shells with general sigmoid law and power law in thermal environment using third-order shear deformation theory. Journal of Sandwich Structures and Materials. 2019;21(3):938-972. http://doi.org/10.1177/1099636217704863
  5. Malek S., McRobie A., Shepherd P., Williams C. From a weightless bent wire coat hanger to shell structures via the Beltrami stress tensor. Journal of the International Association for Shell and Spatial Structures. 2017;58(1):39-50. http://doi.org/10.20898/j.iass.2017.191.839
  6. Zubchaninov V.G., Alekseeva E.G., Alekseev A.A., Gultiaev V.I. Modeling of elastoplastic steel deformation in two-link broken trajectories and delaying of vector and scalar material properties. Materials Physics and Mechanics. 2019;42(4):436-444. http://doi.org/10.18720/MPM.4242019_8
  7. Taraghi P., Zirakian T., Karampour H. Parametric study on buckling stability of CFRP-strengthened cylindrical shells subjected to uniform external pressure. Thin-Walled Structures. 2021;161:107411. http://doi.org/10.1016/j.tws.2020.107411
  8. Govind P.L. Complicated features and their solution in analysis of thin shell and plate structures. Structural Mechanics of Engineering Constructions and Buildings. 2018;14(6):509-515. http://doi.org/10.22363/1815-5235-2018-14-6-509-515
  9. Petrolo M., Carrera E. Best theory diagrams for multilayered structures via shell finite elements. Advanced Modeling and Simulation in Engineering Sciences. 2019;6(1):4. http://doi.org/10.1186/s40323-019-0129-8
  10. Rahmanian M., Javadi M. A unified algorithm for fully-coupled aeroelastic stability analysis of conical shells in yawed supersonic flow to identify the effect of boundary conditions. Thin-Walled Structures. 2020;155:106910. http://dx.doi.org/10.1016/j.tws.2020.106910
  11. Musa A.E.S., Al-Shugaa M.A., Al-Gahtani H.J. An equivalent imperfection-based FE simulation of the stability of dented cylindrical shells accounting for unintended imperfections. Thin-Walled Structures. 2021;158:107159. http://doi.org/10.1016/j.tws.2020.107159
  12. Carrera E., Valvano S., Kulikov G.M. Electro-mechanical analysis of composite and sandwich multilayered structures by shell elements with node-dependent kinematics. International Journal of Smart and Nano Materials. 2018;9(1):1-33. http://doi.org/10.1080/19475411.2017.1414084
  13. Soltani Z., Hosseini Kordkheili S.A. Interlaminar stress analysis of composite shell structures using a geometrically nonlinear layer-wise shell finite element. Composite Structures. 2021;257:113074. http://doi.org/10.1016/j.compstruct.2020.113074
  14. Cheremnykh S., Kuzhin M. Solution of the problem of stability of 40x steel shell. Journal of Physics: Conference Series. International Scientific Conference on Modelling and Methods of Structural Analysis, MMSA 2019. 2020; 1425:012191. http://doi.org/10.1088/1742-6596/1425/1/012191
  15. Cheremnykh S., Zubchaninov V., Gultyaev V. Deformation of cylindrical shells of steel 45 under complex loading. E3S Web of Conferences. 22nd International Scientific Conference on Construction the Formation of Living Environment, FORM 2019. 2019;97:04025. http://doi.org/10.1051/e3sconf/20199704025
  16. Moita J.S., Araújo A.L., Mota Soares C.M., Correia V.F., Herskovits J. Material distribution and sizing optimization of functionally graded plate-shell structures. Composites Part B: Engineering. 2018;142:263-272. http://doi.org/10.1016/j.compositesb.2018.01.023
  17. Norouzzadeh A., Ansari R. Nonlinear dynamic behavior of small-scale shell-type structures considering surface stress effects: an isogeometric analysis. International Journal of Non-Linear Mechanics. 2018;101:174-186. http://doi.org/10.1016/j.ijnonlinmec.2018.01.008
  18. Gerasimidis S., Virot E., Hutchinson J.W., Rubinstein S.M. On establishing buckling knockdowns for imperfection-sensitive shell structures. Journal of Applied Mechanics, Transactions ASME. 2018;85(9):091010.
  19. Li G., Carrera E., Cinefra M., de Miguel A.G., Pagani A., Zappino E., Kulikov G.M. Evaluation of shear and membrane locking in refined hierarchical shell finite elements for laminated structures. Advanced Modeling and Simulation in Engineering Sciences. 2019;6(1):8. http://doi.org/10.1186/s40323-019-0131-1
  20. Lamine D.M., Djamal H., Oussama T., Ayoub A., Khechai A. Effect of boundary conditions and geometry on the failure of cylindrical shell structures. Engineering Solid Mechanics. 2020;8(4):313-322. http://doi.org/10.5267/j.esm.2020.4.001
  21. Sun S., Liu L. Parametric study and stability analysis on nonlinear traveling wave vibrations of rotating thin cylindrical shells. Archive of Applied Mechanics (Ingenieur Archiv). 2021. http://doi.org/10.1007/s00419-021-01934-0
  22. Mohammed N.M., Creagh S.C., Tanner G. Tunnelling around bends-wave scattering in curved shell structures. Wave Motion. 2021;101:102697.
  23. Sedira L., Hecini M., Hammadi F., Ayad R., Meftah K. Discrete-Mindlin finite element for nonlinear geometrical analysis of shell structures. Computational and Applied Mathematics. 2016;35(3):951-975. http://doi.org/10.1007/s40314015-0279-3
  24. Pietraszkiewicz W., Konopińska V. Junctions in shell structures: a review. Thin-Walled Structures. 2015;95:310-334. http://doi.org/10.1016/j.tws.2015.07.010
  25. Muc A., Flis J., Augustyn M. Optimal design of plated/shell structures under flutter constraints-a literature review. Materials. 2019;12(24):4215. http://doi.org/10.3390/MA12244215
  26. Abrosimov N.A., Elesin A.V., Igumnov L.A. Numerical simulation of the process of loss of stability of composite cylindrical shells under combined quasi-static and dynamic actions. Mechanics of Composite Materials. 2019;55(1):41-52. http://doi.org/10.1007/s11029-019-09790-4
  27. Abrosimov N.A., Elesin A.V., Igumnov L. Computer simulation of the process of loss of stability of composite cylindrical shells under combined quasi-static and dynamic loads. Advanced Structured Materials. 2021;137:125-137. http://doi.org/10.1007/978-3-030-53755-5_9
  28. Karpov V.V., Semenov A.A. Mathematical models and algorithms for studying strength and stability of shell structures. Journal of Applied and Industrial Mathematics. 2017;11(1):70-81. http://doi.org/10.1134/s1990478917010082

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».