Influence of the concrete strength and the type of supports on the stress-strain state of a hyperbolic paraboloid shell footbridge structure
- Authors: Cajamarca-Zuniga D.1,2, Luna S.1
-
Affiliations:
- Catholic University of Cuenca
- Peoples’ Friendship University of Russia (RUDN University)
- Issue: Vol 17, No 4 (2021)
- Pages: 379-390
- Section: Seismic resistence
- URL: https://journals.rcsi.science/1815-5235/article/view/325668
- DOI: https://doi.org/10.22363/1815-5235-2021-17-4-379-390
- ID: 325668
Cite item
Full Text
Abstract
Relevance. This work is the first in a series of publications on the selection of a suitable analytical surface for implementation as a self-supporting structure for a thin shell footbridge. The study on the influence of concrete strength, live load position and support types on the stress-strain state of a hyperbolic paraboloid (hypar) shell is presented. Objective - to define the initial design parameters such as the appropriate concrete strength and the support type that generates the best structural behaviour to perform the subsequent structural design of a thin shell footbridge. Methods. The static finite element analysis was performed for 4 compressive strengths of concrete (28, 40, 80, 120 MPa) which correspond normal, high and ultra-high resistance concrete, 5 different live load arrangements and 3 different support conditions. Results. The shell model with pinned (two-hinged) supports shows the same vertical displacements as the model with fixed supports (hingeless). For the studied shell thickness, in terms of stress behaviour, the model with pinned ends is more efficient. The combination of two-hinged supports with 80 MPa concrete strength shows a better structural performance.
About the authors
David Cajamarca-Zuniga
Catholic University of Cuenca; Peoples’ Friendship University of Russia (RUDN University)
Author for correspondence.
Email: cajamarca.zuniga@gmail.com
ORCID iD: 0000-0001-8796-4635
Associate Professor of the Department of Civil Engineering, Catholic University of Cuenca; PhD postgraduate student, Assistant Professor of the Department of Civil Engineering, Engineering Academy, Peoples’ Friendship University of Russia
Av. De las Americas & Humboldt, Cuenca, 010101, Republic of Ecuador; 6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationSebastian Luna
Catholic University of Cuenca
Email: selunav07@est.ucacue.edu.ec
ORCID iD: 0000-0003-2431-3960
Civil Engineer, master student of the Department of Civil Engineering
Av. De las Americas & Humboldt, Cuenca, 010101, Republic of EcuadorReferences
- Bradshaw R., Campbell D., Gargari M., Mirrniran A., Tripeny P. Special structures: past, present, and future. J. Struct. Eng. 2002;128(6):691-709. http://dx.doi.org/10.1061/(asce)0733-9445(2002)128:6(691)
- Ramm E., Mehlhorn G. On shape finding methods and ultimate load analyses of reinforced concrete shells. Eng. Struct. 1991;13(2):178-198. http://dx.doi.org/10.1016/0141-0296(91)90050-M
- Aleshina O., Cajamarca D., Barbecho J. Numerical comparative analysis of a thin-shell spatial structure for the Candela’s Cosmic Rays Pavilion. Adv. Astronaut. Sci. 2021;174:741-752.
- Pérez-Peraza J. Reminiscences of cosmic ray research in Mexico. Adv. Sp. Res. 2009;44(10):1215-1220. http://dx.doi.org/10.1016/j.asr.2008.11.031
- Minor A. Up-and-down journeys: the making of Latin America’s uniqueness for the study of cosmic rays. Centaurus. 2020;1-23. http://dx.doi.org/10.1111/1600-0498.12335
- Mendoza M. Felix Candela’s first European Project: The John Lewis Warehouse, Stevenage New Town. Archit. Res. Q. 2015;19(2):149-60. http://dx.doi.org/10.1017/S1359135515000251
- Krivoshapko S.N., Hyeng C.A.B., Mamieva I.A. Chronology of erection of the earliest reinforced concrete shells. Int. J. Recent Res. Appl. Stud. 2014;18(2):95-108.
- Krivoshapko S.N., Mamieva I.A. Analytical surfaces in the architecture of buildings, structures and components. Moscow: LIBROKOM Publ.; 2011. (In Russ.)
- Kourkoutas V. Parametric form finding in contemporary architecture Vassilis Kourkoutas. Vienna: Technische Universität Wien; 2007.
- Krivoshapko S.N., Ivanov V.N. Encyclopedia of analytical surfaces Switzerland: Springer International Publishing AG; 2015. http://dx.doi.org/10.1007/978-3-319-11773-7
- Farshad M. Design of hyperbolic paraboloid shells. In: Design and Analysis of Shell Structures. Switzerland: Springer-Science+Business Media, B.V.; 1992. p. 215-247.
- Oliva Quecedo J., Antolin Sanchez P., Cámara Casado A., Goicolea Ruigómez J.M. Finite element model analysis of works authored by Felix Candela. Hormigón y Acero. 2011;(1):61-76.
- Rippmann M. Funicular shell design geometric approaches to form finding and fabrication of discrete funicular structures. PhD Thesis. Zurich; 2016.
- Bischoff M., Ramm E., Irslinger J. Models and finite elements for thin-walled structures. In: Encyclopedia of Computational Mechanics Second Edition. John Wiley & Sons, Ltd.; 2017. http://dx.doi.org/10.1002/9781119176817.ecm2026
- Marmo F., Demartino C., Candela G., Sulpizio C., Briseghella B., Spagnuolo R., et al. On the form of the Musmeci’s bridge over the Basento river. Eng. Struct. 2019;191(May):658-73. http://dx.doi.org/10.1016/j.engstruct.2019.04.069
- Fenu L., Congiu E., Lavorato D., Briseghella B., Marano G.C. Curved footbridges supported by a shell obtained through thrust network analysis. J. Traffic Transp. Eng. (English Ed.) 2019;6(1):65-75. http://dx.doi.org/10.1016/j.jtte.2018.10.007
- Fenu L., Congiu E., Marano G.C., Briseghella B. Shell-supported footbridges. Curved Layer Struct. 2020;7(2): 199-214. http://dx.doi.org/10.1515/cls-2020-0017
- Peiretti H.C., Martín J.R., Delgado J.S., Matadero and invernadero shell footbridges over the Manzanero River in Madrid. Rev. Obras. Publicas. 2011;158(3520):39-50.
- McIntyre J. Outokumpu: building bridges to span over distance and time. Stainless Steel World. 2019;(137):2-3.
- Zeas Guzman K. Los puentes del Centro Histórico de Cuenca. Universidad de Cuenca; 2013.
- Saltik E., Alacam S. Experiments for design and optimization of thin shell structures. ATI 2020: “Smart Buildings, Smart Cities” Proceedings. Izmir: Yaşar University; 2020. p. 76-90.
- American Association of State Highway and Transportation Officials. AASHTO LRFD Bridge Design Specifications. 8th ed. Washington D.C.; 2017 p. 1881.
- ACI 363R-92. State-of-the-art report on high-strength concrete (vol. 92). ACI Committee 363. American Concrete Institute; 1992.
- Razvi S.R., Saatcioglu M. Strength and deformability of confined high-strength concrete columns. ACI Struct. J. 1994;91(6):678-696.
- Sheikh S.A., Shah D.V., Khoury S.S. Confinement of high-strength concrete columns. ACI Struct. J. 1994;91(1):100-111.
- Maten R.N. ter Ultra high performance concrete in large span shell structures. Delft: Delft University of Technology; 2011.
- Perry V., Zakariasen D. First use of ultra-high performance concrete for an innovative train station canopy. Concrete Technology Today - Portland Cement Association. 2004;25(2):1-7.
- Walraven J.C. Designing with ultra high strength concrete: basics, potential and perspectives. In: Schmidt M., Fehling E., Geisenhansluke C. (eds.) Proceedings of the International Symposium on Ultra-High Performance Concrete. Kassel: Die Deutsche Bibliothek; 2004. p. 853-864.
- Ramesh M.N., Teichmann T. Ultra high performance concrete: sustainable and cost effective. B2B Purchase. Mumbai; 2016. Available from https://b2bpurchase.com/ultra-high-performance-concrete-sustainable-and-cost-effective/ (accessed: 02.04.2021).
- Azmee N.M., Shafiq N. Ultra-high performance concrete: from fundamental to applications. Case Stud. Constr. Mater. 2018;9:e00197. http://dx.doi.org/10.1016/j.cscm.2018.e00197
- Sarmiento P.A., Torres B., Ruiz D.M., Alvarado Y.A., Gasch I., Machuca A.F. Cyclic behavior of ultra-high performance fiber reinforced concrete beam-column joint. Struct. Concrete. 2019;20:348-360. http://dx.doi.org/10.1002/suco.201800025
- Shafieifar M., Farzad M., Azizinamini A. Experimental and numerical study on mechanical properties of ultra high performance concrete (UHPC). Constr. Build. Mater. 2017;156:402-411. http://dx.doi.org/10.1016/j.conbuildmat.2017.08.170
- Dingqiang F., Wenjing T., Dandian F., Jiahao C., Rui Y., Kaiquan Z. Development and applications of ultra-high performance concrete in bridge engineering. IOP Conf. Ser. Earth Environ. Sci. 2018;189:22038. http://dx.doi.org/10.1088/1755-1315/189/2/022038
- Bahr O., Schaumann P., Bollen B., Bracke J. Young’s modulus and Poisson’s ratio of concrete at high temperatures: experimental investigations. Mater. Des. 2013;45:421-429. http://dx.doi.org/10.1016/j.matdes.2012.07.070
- Mostofinejad D., Nozhati M D. Prediction of the modulus of elasticity of high strength concrete. Iranian Journal of Science and Technology Transaction B: Engineering. 2005;29(B3):311-321.
- Chen H.J., Yu Y.L., Tang C.W. Mechanical properties of ultra-high performance concrete before and after exposure to high temperatures. Materials (Basel). 2020;13(3):1-17. http://dx.doi.org/10.3390/ma13030770
- Ohmori H., Yamamoto K. Shape optimization of shell and spatial structure for specified stress distribution. Mem. Sch. Eng. Nagoya Univ. Japan. 1998;50(1):1-32.
Supplementary files
