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Abstract. Girder-slab structures are widely used in industrial buildings, bridge decks, complex combined engineering structures and
other objects of construction and mechanical engineering. An important task in their design is to find the most economical structural
solution with the least amount of material while ensuring the necessary strength and rigidity. Therefore, the development of methods
and algorithms for searching of the most rational and optimal design solutions is of great significance. The authors offer a technique
of variant design of girder-slab structures with various cell shapes: rectangular, triangular, rhombic, trapezoidal and other, when
analyzing vibrations. The technique is based on the principles of physicomechanical analogies and geometrical methods of structural
mechanics. For a numerical example, a cantilever girder-slab structure on trapezoidal base is studied. The bars are of typical sections,
the flooring is smooth steel. It is shown that cell geometry affects flexural vibrations of the girder-slab structure and material
consumption.
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BapuaHnTHOE NPOEKTHPOBAHUE IJIACTUHYATO-CTEPKHEBON KOHCTPYKIMHU
C Pa3JMYHOI reoMeTpUYecKOH si9eiKoil Mpu U3rHOHBIX KOJIeOaHUAX

A.A. Yepusies "™, K.B. Map¢pun

OpnoBckuil rocynapctBenHslil yHuepcutet umenu U.C. Typrenesa, Open, Poccutickasa @edepayus
>4 chernyev87@yandex.ru
IToctymmia B penakumio: 20 pespaist 2025 .

Jopabotana: 10 ampens 2025 r.
ITpunsrta k myonukanuu: 18 anpemns 2025 r.

AnHoTauus. [TnacTuHYaTO-CTEp)KHEBBIE KOHCTPYKINH IIUPOKO UCTIONB3YIOTCS B KaUueCTBE IEPEKPHITUI 31aHui, TPOJIETHBIX CTPO-
€HHI MOCTOB, CIIO)KHBIX KOMOMHUPOBAHHBIX HH)KCHEPHBIX COOPYKEHUSAX U APYTUX OOBEKTOB CTPOUTENHCTBA M MALTMHOCTPOCHUSI.
Baxnoii 3aﬂaqeﬁ IIpU UX NPOCKTUPOBAHUU SABJIACTCA IMONUCK Han6onee OKOHOMHYHOTO KOHCTPYKTUBHOT'O PCIICHNS, Ha BBIIIOJTHCHUE
KOTOpOTO 3aTpauynBajoch Obl HAUMEHbIIEE KOJIMYECTBO MaTepHaia Ipu oOecrnedyeHnH Heo0X0AUMOM MPOYHOCTH U JKECTKOCTH.
B cBs3u ¢ 3THM O0JBIIOE 3HAYSHUE TPH MPOSKTHPOBAHUH NPHIAIOT Pa3paboTKe METOJOB U arOPUTMOB IOMCKa palMOHAIBHBIX
¥ ONTUMANBHBIX KOHCTPYKTHUBHBIX pemieHui. [IpemnoskeHa aBTOpcKas METOAMKA BAapUAHTHOTO NMPOSKTHPOBAHUS IUIACTHHYATO-
CTEP KHEBBIX KOHCTPYKIIUH C pa3JIMYHON T€OMETPUYECKOM SUCHKO B TIaHEe: MPSMOYTOJIbHOM, TPEYTOIBHOM, pOMOMYECKOH, Tpare-
LMEBUIHON U IPpyroM MpuU HCCIeT0BaHUN Kxonebanuii. Metorka OCHOBaHA Ha UCIIOIL30BAHUN [IPUHLIUIIOB (1)1/131/1K0-Mexa1-11/1qecx14x
aQHAJIOTHMH U IeOMETPUYECKUX METOJIOB CTPOMTEILHOW MEXaHUKU. B KauecTBe 00bEKTa MCCIENOBAHMS ISl YUCIEHHOTO MpUMepa
paccMaTpuBaeTCs KOHCOJbHAS TIACTHHYATO-CTEP)KHEBas! KOHCTPYKIMS Ha TpanenueBHIHOM Iu1aHe. CedeHus cTep)KHeH U3 THIIo-
BBIX MpPOQUICH, HACTHI CTaJbHOW rinajakuil. [TokazaHo, 4TO reoMeTpHsl SUYCHKU BIMSET Ha M3TMOHBIC KOJNEOAHUS TIACTHHYATO-
CTEP)KHEBOH KOHCTPYKIIMU U MAaTEPHATIOEMKOCTb.

KnioueBble ciioBa: u3ruOHble KoneOaHus, INIACTUHYATO-CTEPKHEBbIE KOHCTPYKIIMH, OCHOBHAs YaCTOTa COOCTBEHHBIX KOJIeOaHUH,
MaTepHaIoeMKOCTb, METAIIMIECKast KOHCTPYKIUS

3asiBiieHHE 0 KOH(JIUKTE HHTEPECOB. ABTOPHI 3aSBISIOT 00 OTCYTCTBHH KOH(IJIUKTa HHTEPECOB.

Bkaan aBTopoB: Yepnsaes A.A. — HaydHOE PYKOBOJCTBO, KOHIICTIHS HCCIEJOBAHMSA, PELEH3UPOBAHME W PEOAKTUPOBAHUE,
MOJIrOTOBKA W IMPOBEIEHHE SKCIEpUMEHTa, BhIBOIBL;, Mapghun K.B. — 0030p nurteparypbl, 00paboTka pe3ybTaToB, HAIMCAHHE
TEKCTa.

Jost uurupoBanusi: Chernyaev A.A., Marfin K. V. Variant design of girder-slab structure with different geometric cells under flexural
vibrations // CTpouTenbHasi MEXaHHKAa MH)XCHEPHBIX KOHCTPYKUMi u coopyxenuid. 2025. T.21. Ne 2. C. 167-178. http://doi.org/
10.22363/1815-5235-2025-21-2-167-178

1. Introduction

Girder-slab structures are widely used in industrial buildings, bridge decks, complex combined
engineering structures and other construction objects and machine structures. An important task in their
design is to find geometric grids with the least amount of material and while ensuring the strength and rigidity,
also in case of vibrations [1-3]. Now, computer programs for the finite element analysis of the stress-strain
state of structures are a common tool of engineers. In tasks of variant engineering and optimization of designs
of girder-slab structures, numerical methods are also used [4-6]. A set of methods, which can be used for
girder-slab design is very broad: from rather universal, such as nonlinear mathematical programming and
genetic algorithms, to problem-oriented [7-9].

All methods have advantages and disadvantages and means for setup, appropriate application of which
can strongly influence the speed of operation of the methods and even correctness of the results.

Moreover, direct borrowing of universal numerical optimization methods, which in some works are
referred to as “search optimization methods”, from mathematics leads to the increase in dimensionality of the
problems and significant growth in calculation amount in case of the increase in the number of design

Yepunee Anopeii Anekcanoposuu, KaHIuaaT TEXHUYECKUX HAYK, JOLECHT Ka)eaphl IPOMBILIICHHOIO U FPaXKAaHCKOTO CTpouTebcTBa, OpIoBekuii rocy-
napcrBeHHbI yHHBepeuteT uMenu W.C. Typrenesa, Poccuiickas @eneparus, 302026, r. Open, yi. Komcomonsckas, 1. 95; eLIBRARY SPIN-kox: 4803-
8464, ORCID: 0000-0002-0158-7056; e-mail: chernyev87@yandex.ru
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variables. Development of the methodology of nonlinear mathematical programming should be pointed out
from mathematical works on geometrical optimization methods for the purposes of structural design and
construction [10]. It requires accurate formalization of the optimization problem statement.

In this work, the authors propose a technique of variant design of girder-slab structures with various
horizontal cell shapes, i.e. rectangular, triangular, rhombic, trapezoidal and other, with the choice of the most
rational structural solution in terms of the lowest material costs for its production and while ensuring the
rigidity under vibrations. The technique is based on use of the principles of physicomechanical analogies and
geometrical methods of structural mechanics. To implement this technique, it is planned to develop software
products that will visually represent the entire calculation procedure.

2. Methods

Geometrical methods of structural mechanics are based on mathematical analogy and the functional
correlation, individual physicomechanical characteristics of the stress-strain state of plane elements of
structures (pressures, deflections, vibration frequencies, critical buckling forces and others) in the shape of
plates, membranes, bar cross-sections with their geometrical parameters (sizes, angles, side ratio and so on).
For this, it is necessary to choose some characteristic of the geometric shape for plates and membranes or of
the cross-section for the bars. And if it is proved that it is related to the parameters of the stress-strain state by
some function or expression, then it is possible to study the change in the stress-strain state parameters using
the chosen geometric characteristic [11; 12] et. al.

In this work, it is proposed to use the geometrical parameter representing the relation of the inner mapping
radius to the external mapping radius of the areas restricted to the contour of plates, membranes or bar cross-
sections [13].

During the research, the authors’ technique of physical-geometric analogy is used, see references to this
technique in [14-16], according to which the integral geometric characteristic of a flat area with a convex
contour (the ratio of mapping radii) is analogous to the integral physical characteristics in the considered
problems, that is, the laws of change of physical characteristics in these problems are modeled by the
corresponding changes in the shape of the area.

2.1. Definition of Terms

“The following quantities are involved with a plane domain D:

A is the area of D,” .... “r, is the inner radius of D with respect to point a, point a lies necessarily

inside D. The interior of D is mapped conformally onto the interior of a circle, so that point a corresponds
to the center of the circle and the linear magnification at point a is equal to 1; the radius of the obtained circle

is 7, The value of 7, varies with point a. 7 is the maximum inner radius.” ... “7 is the outer radius of D.

The complementary domain of D, exterior to C, is mapped conformally onto the exterior of a circle, so that

the points at infinity correspond and the linear magnification at infinity is equal to 1; the radius of the obtained
circleis 7 .7 [13, p. 2].

“... C aclosed plane curve without double points surrounding plane domain D [13, p. 1].

2.2. Formulae

The formulas for finding internal 7 and external 7 mapping radii for some singly connected domains,
which are considered in the work, take the following form [13; 17]:
= for a circle of radius a

r=a, r=a; (1)
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where 7 is the number of the sides; L is the perimeter; G(x) is the Gamma-function;

» for arbitrary triangles with angles o, n, my:

F=dn f(a)f(B) f(v)p. F=-r, 3)

r

where

1 x* E‘
f(x)= G(x){(l_x)”} , (4)

p is the large radius; A4 is the square; x is a or B or y; G(x) is the same as in (2);

= for isosceles triangles with angles o= expressions (3) will take the following form:

F=4n- (o) f(v)ps F=—o (5)

where @ is the equal base angle; % is the height;

= for rectangular triangles (= m/2), it follows from expression (3) that

_ sin2a-c?
T ©

where d is the angle in case of hypotenuse; ¢ is the hypotenuse;

= for rhombs with angle na

1 1

12 2

<L, T= L; (7)
of5)ol"
2)7\ 2

TS

where G(x) and L is the same as in (2);

7=

= for ellipses with semiaxes a and b (a > b)

-1

oo _1 o
fZF{an(nH)} {1+2an2} , 7= a;—b , (8)
n=0 n=1

where

= ©
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= for rectangles with the sides a and b (a > b)

1
=1 Cos az ;Skk _:3 ')k' cos™* o

2 nHn
=msin (xz;k kk+i ')k' sin* a,

-2

—b(1+2iq"2j : (10)

\II@ ‘iIIQ

Ta

where ¢ =e ° | o is the argument of complex numbers (circle points which images are rectangle vertices in

case of conformal mapping).
For other complex domains, for example, parallelogram, trapezoid and other, mapping radii can be
obtained using the Schwarz-Christoffel formula [18] and expanding the mapping function in a Taylor series.
These formulas are also given in the authors’ works [14; 15], among other.

2.3. Mathematical Functional Correlation

Mathematical analogy and the functional correlation of mapping radiuses with the characteristics of the
stress-strain state, vibrations and stability of structural elements in the shape of plates, membranes, bar cross-
sections are defined in earlier works [19].

Since the stress state of a plate under vibrations is considered, then, the resulting relationship for the
fundamental frequency of vibration of a plate should be also considered. The fundamental frequency of
vibration of a plate wo is related to mapping radii 7 and 7 by expression [19]:

N |
wogk(gj ~ND/m (11)
r

A 2

where £ is a numerical constant turning the expression into an equality for round plates, which depends
on the type of boundary conditions, m is the mass (weight) of the plate with an area of 1 m?; 4 is the area
of the plate; D is the flexural rigidity of the plate:

Ef

TR0’ (12)

where E is the modulus of elasticity; ¢ is thickness of the plate; v is the Poisson’s ratio.

In case of fixed supports of the plate, £ =32.08 in (11).

In case of pinned supports of the plate, the value of £ can be indicated only for a specific plate material.
Since the transition of a regular n-angle plate into a round one with pinned supports leads to the well-known
Sapondzhyan — Babuska paradox [20], according to which the value of the vibration frequency will depend
on the Poisson’s ratio. For such a case of boundary conditions, for comparison, the value of £=17.8
corresponding to a plate in the shape of a regular 16-gon is specified, which in shape is close enough to round.

Expression (11) was obtained using the variational representation of the eigenvalue of the differential
equation of free vibrations of the plate and the conformal representation of the inner part of its region when
mapped onto a unit circle. And also with the help of many mathematical transformations.

Expression (11) shows that fundamental frequency of vibration of a plate wo is inversely proportional
to the ratio of mapping radii 7/7 » or directly proportional to the ratio of mapping radii 7 /7. It means that,
the change in fundamental frequency of vibration wo for plates of various shapes can be studied by defining
the change in the ratio of mapping radii 7/7 . The ratio of mapping radii 7/7 in expression (11) characterizes
the geometric shape of the plate in dimensionless form.
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2.4. Graphs and Functions
In work [21], instead of numerical constant k£ (11), correcting polynomial functions of the form
k,=f(7/7) were defined for all plates of simple shapes: rectangular plates, isosceles triangular plates,

rectangular triangular plates, thombic plates, regular polygonal plates, elliptical plates. k, represents the

fundamental frequency of vibration of a plate in general form. Graphs were constructed (Figures 1, 2).

102-k;1,]] bim
Regular polygons —
6 €g polyg —/7?16
5
Triangles, rhombs
4 \,
3 = —
%/ Rectangles
) / A \ ' .
/ /"</ \[Ellipses v=0.5
=
1 // Zz= Ellipses v=0.33
0 0.2 0.4 0.6 0.8 1.0

Figure 1. Graphs of the fundamental frequency of vibration of plates with pinned supports
along the perimeter, presented depending on the ratio of mapping radii
Source: made by A. A. Chernyaev

41 | DIm
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(rir)
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Figure 2. Graphs of the fundamental frequency of vibration of plates with fixed supports
along the perimeter, presented depending on the ratio of mapping radii
Source: made by A. A. Chernyaev

For elliptical plates with pinned supports along the perimeter, the graphs and functions k = f(7/7)

will be different for different values of the Poisson’s ratio due to the indicated paradox [20]. Figure 1 shows,
for example, graphs for two values of the Poisson’s ratio: v=10.33, v=0.5.
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As shown in Figures 1, 2 points 3, 4, 6, 16 correspond to k, values for plates in the shapes: regular

triangle (point 3), square (points 4), regular hexagon (points 6), regular hexadecagon (points 16), circle
(point O).
In works [19; 21] it was proved that the values of k_ for all plates with a convex contour, for example

parallelogram, trapezoid, are inside between these graphs.

2.5. Computational Model and Algorithm

The computational model of the girder-slab structure represents a cross system of bars of the first, second
and third levels, which support the slabs (plates). The bars of the first level are called the main girders or
spars. The bars of the second level are called secondary beams. The bars of the third level are called floor
beams. Beams and girders can be made in the shape of bars of constant or variable cross-section. They can
be located in space not only at right angles, but also inclined with a different geometric cell (Figure 3) [14; 15].

The mass (weight) from the plates is transmitted along the perimeter to the floor beams and secondary
beams. The plates can be loaded, then the mass (weight) takes this load into account. The mass (weight) from
the floor beams is transferred to the secondary girders at the connection points. The mass (weight) from the
secondary beams is transferred to the main girders (spars) at the connection points. The girder-slab structure
vibrates freely from the mass (weight). The main parameter to determine is the fundamental frequency
corresponding to the first mode of vibration. The main factor that affects the fundamental frequency of
vibrations is the mass (weight) of the girder-slab structure. If the horizontal outline of the structure is assumed
to be constant or specified to be unchanged according to the design assignment, then with different geometric
cells (geometric shape of plates) the main vibration frequency will be different (see similar problems, for
example [22-24]). Therefore, the main task in the design of girder-slab structures is to determine the geometry
of the cells.

Geometric cell

Bars of the third level
(floor beams)

Bars of the second level
(secondary beams)

Bars of the first level
(main girders or spars)

Figure 3. Computational model of the girder-slab structure
S ource: made by A.A. Chernyaev

An algorithm is being developed for determining the geometry of cells of various shapes in the girder-
slab system at a given fundamental frequency of vibration of the plates based on the established mathematical
and graphical relationship between the fundamental frequency of vibration of the plates and the ratio of the
mapping radii of the region bounded by the contour of the plates (Figure 4).

This algorithm uses a custom designed computer program: patent No. 2016615454 (RU) (Figure 5).
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Choice of the type of restraint of plates along the
contour to the floor girders (pinned support
or fixed support)

!

AN

Setting the thickness of plates, mass (weight) of 1m? of plates

Poisson's ratio, modulus of elasticity of the material

/Setting the value of the fundamental frequency of
vibration of the plates
Z

!

N

/

!

N\

Definition of the shapes of the plates corresponding to
the fundamental frequency of vibration

Input of auxiliary geometrical data for plates of
irregular complex shapes (parallelogram and
trapezoid)

!

i

AN

etermination of the geometric parameters of the plates

(angles, lengths of the sides, etc.) of various shapes
providing a given value of the fundamental frequency of
vibration of the plates as part of the girder-slab structur
using the mapping radii

i

Designing a computational model of the girder-slab structure

with different geometric cells based on the obtained plates

End

Figure 4. Algorithm for determining the geometry of cells of various shapes
in the girder-slab structure at a given fundamental frequency of vibration of the plates

Source: made by A. A. Chernyaev

:!:Determination of the ratio of conformal radii of a flat region
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Figure 5. Working window of the computer program: patent Ne 2016615454 (RU)

S ource: made by A. A. Chernyaev using PrintScreen
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3. Results and Discussion

In this section, a numerical example is presented. A cantilever girder-slab structure on trapezoidal plane
with sizes: larger base 3 m, smaller base 1.5 m, height 4.5 m, larger inner angle 90°, is studied. The bars are
made of typical sections, plates (flooring) are steel and smooth. The bars of the first level (main girders or
spars) are made with a linearly variable section. The bars of the second level are parallel.

The bars of the first level (main girders or spars) with a larger base are fixed. The bars of the second
level (secondary beams) are connected to the bars of the first level by means of steel covers using electric
welding, such connection is considered to be rigid. The bars of the third level (floor beams) are connected to
the bars of the second level in the same way. The steel flooring is welded to flooring beams by means of
welding. Strictly speaking, such connection is considered rigid, however in calculations such connection is
considered as a hinge for thin plates in safety margin of material.

Initial data. The material is steel, modulus of elasticity £ = 2.1 10° MPa, Poisson’s ratio v = 0.3,

weight of steel 78.5 kN/m®. Thickness of the plates (flooring) ¢ = 1.0 mm.
The cross section of the first level bars is flange beam in accordance with Figure 6.

1 2 1-1 22
= M. e
[: |10 ] L ]
1 \E =] L
— ) - gl 10
4L 45m ﬁL s 100 «
67|—l
o, 100

Figure 6. Bars of the first level (main girders or spars)
S ource: made by A. A. Chernyaev

The cross section of the second level bars is channel No. 5 in accordance with the interstate standard
GOST 8240-97".

The cross section of the third level bars is equilateral angle No. 30x3 in accordance with the interstate
standard GOST 8509-932,

Solution. With the help of the computer program: patent No. 2016615454 (RU)* (see Figure 5),
the geometric sizes of plates of various shapes are determined. All plates have identical values of the
fundamental frequency of vibration

D
0 = 2466532
A

absolute value wo = 76.34 1/sec.

On their basis, girder-slab structures with a different geometric cell are designed. The structures
numbered 1, 2, 3,4,5,8,9, 10, 11, 12, 13, 14 (see Figure 5) are selected for calculation (Figure 7).

Example result of flexural vibrations of girder-slab structures with geometric cell number 1 (Figure 7)
in SCAD Office [25] is shown in Figure 8. Calculation of flexural vibrations of other girder-slab structures
is performed similarly in SCAD Office. The results of the flexural vibration analysis of the structures
(Figure 7) are shown in Table.

"' GOST 8240-97. Hot-rolled steel channels. Assortment. Minsk, 1997.

2 GOST 8509-93. Hot-rolled steel equal-leg angles. Assortment. Minsk, 1993.

3 Chernyaev A.A. Determination of the ratio of conformal radii of a flat region. Certificate of registration of the computer
program RU 2016615454, 05/25/2016. Application No. 2016612918. 2016.
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Figure 7. Girder-slab structures with different geometric cell
S ource: made by A.A. Chernyaev

Figure 8. Example result of flexural vibration analysis of the girder-slab structure
with geometric cell number 1 (Figure 7)
S ource: made by A.A. Chernyaev using SCAD Office

Results of flexural vibration analysis of girder-slab structures with different geometric cell

Geometric cell (Figure 7) | Material consumption, kg | Fundamental frequencyof vibration, 1/sec | Maximum deflection, mm
1 421 37.13 2.43
2 446 36.67 242
3 438 37.22 2.35
4 420 37.30 2.28
5 453 36.44 2.46
6 452 37.01 2.41
7 421 36.77 2.33
8 434 36.46 2.40
9 459 36.15 2.50
10 457 36.8 2.44
11 453 36.98 242
12 443 36.49 2.42

S ource: made by A.A. Chernyaev
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4. Conclusions

The conducted research allowed to conclude the following:

1. Cell geometry affects the flexural vibrations of the girder-slab structure. Between the 12 types of cells
considered in the work (see Figure 7), the difference in the results was: 9.2% by material consumption, 3.1%
by fundamental frequency of vibration, 7.8% by maximum deflection (see Table);

2. The developed technique can be used for variant design and optimization of girder-slab structures.
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