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Abstract. The goal is to determine the free vibration natural frequency spectrum for a plane statically determinate truss with a
cross-shaped lattice. The truss members are elastic and have the same stiffness. Both truss supports are pinned; the truss is
externally statically indeterminate. A model, in which the mass of the structure is uniformly distributed over its nodes, and their
vibrations occur vertically, is considered. The Maxwell-Mohr method is used to determine the stiffness of the truss. The member
forces included in the formula are calculated by the method of joints using the standard operators of Maple mathematical software
in symbolic form. The eigenvalues of the matrix for trusses with different numbers of panels are determined using the Maple
system operators. Spectral constants are found in the overall picture of the frequency distribution constructed for trusses of
different orders. A formula for the relationship between the first frequency and the number of panels is derived from the analysis
of the series of analytical solutions for trusses of different orders. A simplified version of the Dunkerley method is used for the
solution, which gives a more accurate approximation in a simple form. The relationship between the truss deflection under
distributed load and the number of panels was found. Spectral constants were found in the frequency spectrum.
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AHHOTanus. [ MI0CKO# CTaTHYECKH ONpPEeAeNuMOi pepMbI ¢ KpeCcTOOOpa3HON PELIeTKON ONMpeAeNsIeTcsl CIEKTP COOCTBEHHBIX
4yacToT cBOOOHBIX KojeOanuid. CtepxHU QepMbl yIIPyrue U UMEIOT OJMHAKOBYIO KECTKOCTb. O0e onopsl (hepMbl HEMOIBU)KHBIC
[IapHUpHI, epMa BHENIHE CTATUUECKH HeolpeaennMa. PaccMoTpeHa Mozenb, B KOTOPOH Macca KOHCTPYKIUH PaBHOMEPHO pac-
IpesiesieHa Mo ee y3JaM, a UX KoJeOaHUs MPOUCXOIAT MO BepTUKaIH. [ OmpenesieHus KECTKOCTH (epMbl IPUMEHEH METOI
MakcBemia — Mopa. Ycuius B CTEp)KHSX, BXOAAIINE B HOPMYITY, PAaCCUUTHIBAIINCE METOJIOM BBIPE3aHHUS Y3JIOB ¢ IPUMEHEHHEM
CTaHJApTHBIX ONEPATOPOB CHCTEMBbI KOMIBIOTEpHON MaTeMaTuku Maple B cumBosnbHOH opme. COOCTBEHHBIE YHCIIA MATPULIBI
IUIs epM ¢ pasInYHbIM YMCIIOM TaHEeNel pa3bICKUBAIOTCS C MOMOIIBIO OrnepaTopoB cucrteMbl Maple. B o0uieit kaptuHe pacnpe-
JIEJIEHUs] YacTOT, IOCTPOSHHOU A71sl pepM pa3IuuHOro nopsiika, 0OHapyKeHbI CIIEKTpalbHble KOHCTAHThL. 113 aHanmu3a nocnenosa-
TEJIbHOCTH aHAJIUTUYECKUX PEUICHUH I GpepM pa3HOro Mopsaka BbIBeIeHA (OpMysa 3aBHCUMOCTH IEPBOH YaCTOTHI OT YHCIIA
naseneil. Jns peleHus UCIOJIb30BaH YNPOILEHHBIN BapuaHT MeToAa JloHKepies, Aaroluil 6osiee TOUHOE NPUOIIKEHUE B IIPO-
ctoit gopme. Haitnena 3aBucumoctsb mporuba ¢epmbl 1Mo ACHCTBUEM paclpeelieHHOM Harpy3Kd OT Yucliia naHeneit. B crnekrpe
4acToT OOHAPY KEHBI CIIEKTPaJIbHble KOHCTaHTHI. BhiBeneHa hopmysa 3aBucuMocTy nporuba Gpepmsl OT YKcia MaHesen.

KioueBble cioBa: meron JloHkepres, nepBasi yactora, nporud, popmyna Makcsemia — Mopa, peryisipHas KOHCTPYKIIHS, aHa-
JUTHYECKOE PEIICHHE, CIIEKTP YacTOT

3asBiieHHe 0 KOH(JIUKTE HHTepecoB. ABTOD 3asBIsIeT 00 OTCYTCTBUU KOH(IUKTA HHTEPECOB.

Joas uurupoBanus: Kirsanov M.N. Natural frequency spectrum and fundamental frequency formula for plane periodic lattice
truss // CtpoutesbHas MEXaHUKa HHKEHEPHBIX KOHCTPYKIUE 1 coopyskenuit. 2025. T. 21. Ne 2. C. 108—117. http://doi.org/10.22363/
1815-5235-2025-21-2-108-117

1. Introduction

One of the problems of dynamics of engineering structures is the calculation of natural vibration
frequencies. Most often, standard programs based on the finite element method are used for this purpose
[1; 2]. This allows to obtain results for rather complex systems with many parameters, both geometric,
related to the dimensions of the calculated object, and physical, characterizing various material properties of
its elements. An alternative method of calculation of natural frequencies was developed mainly after the
appearance of mathematical computer software. This method is applicable principally for simplified models
of objects. Its main advantage manifests in case of periodic structures, for analytical solution of which the
number of periodicity elements in the model does not affect the accuracy and complexity of calculations.
R.G. Hutchinson and N.A. Fleck [3; 4] were first engaged in the theory of existence and calculation of
periodic statically determinate truss structures. Later, this issue was addressed by F.W. Zok, R.M. Latture
and M.R. Begley [5]. A simplified analysis of civil engineering structures using graph theory methods is
proposed in [6]. The problem of optimizing the size, layout and topology of truss structures with the use
of special algorithms is considered in [7]. In [8], approximate analytical solutions of statics of thin elastic
plates in Maple are given. The superposition method for analyzing the stress state of an isotropic rectangle
is proposed in [9]. A.S. Manukalo [10] analytically solved the problem of the first frequency of natural
vibrations of a plane girder truss. The author’s reference books [11; 12] contain analytical solutions of
problems on the deflection of plane periodic trusses with an arbitrary number of panels. A simple formula
for the lower estimate of natural vibrations of a plane periodic beam truss with a rectilinear upper chord is
obtained in [13] by the Dunkerley method in the Maple mathematical software system. Analytical solutions

Kupcanoe Muxaun Hukonaesuu, ToKTop (GU3NKO-MaTeMaTHUECKUX HAYK, podeccop kKadenpbl poOOTOTEXHUKH, MEXaTPOHUKH, THHAMHUKY H POYHOCTH
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for spatial truss structures are also known. In [14], an estimate of the fundamental frequency of vibration
of an L-shaped spatial truss with an arbitrary number of panels in the cross-girder was obtained by the
induction method. Similar problems of statics and dynamics were solved in analytical form for spatial
trusses in [15; 16].

In this paper, a new configuration of an externally statically indeterminate lattice truss is considered,
and the analytical relationship between the deflection and the first frequency of natural vibration and the
mass, dimensions, and number of panels is derived. The obtained formulas are compared with the results of
traditional numerical calculations taking into account all degrees of freedom of the structure. In the joint
frequency spectrum of a number of trusses of different orders, patterns are determined, which can be used to
simplify practical calculations.

2. Structure

A plane truss consists of 2n panels of length 2a in its middle part and has the total height of 34
(Figure 1). A special feature of the truss is the pinned supports on its ends. At the same time, the truss
remains statically determinate: the truss contains n==8n+20 members, including four members modelling

the supports, and K =4n+10 internal hinge joints, n=2K.

"2a a  2a 2a  2a  2a  2a  2a a 2a

Figure 1. Truss under uniform load, n =3
S o ur ce: made by M.N. Kirsanov

The mass of the truss in the problem of determining the natural frequency is uniformly distributed over
all internal joints. In the model under consideration, the masses vibrate along the vertical y-axis. Under this
assumption, the number of degrees of freedom of the truss is equal to the number of nodes K. It is assumed
that the hinges of the truss are ideal and the material of the members is elastic.

3. Methods
3.1. Calculation of Forces

For the analytical calculation of forces in the truss members, a program written in the Maple symbolic
mathematics language is used. The algorithm of this program was previously used in [10—12]. The nodal
coordinates of the truss with a span of L, =(4n+6)a are defined using loops. The coordinate origin is
located in the left pinned support (Figure 2):

x,=0,y,=0,x,=2a, y,=0;

Xiva = Xope7ei = a(2i+ 1): Yiea = h’ YVonsr4i = 3h’ i= 1’ oee 2n+ 1’

Xopes =Ly =20, 35,0 =0, %55 =Ly, 1,5 =0;

Xypi6 =05 Vauie =20, Xy, =313, ¥5,07 = Vipeo =5h /25

Xgpvo = Lo =3a /2, x40 = Lo Yayiro = 2h.
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The order of connecting the members into nodes is specified by special lists containing the end
numbers of the corresponding members @, ,i=1,...,n. The members of the lower chord, for example,

are coded by the lists: @, =[i,i+1], i=1,..,2n+4.

Figure 2. Numbering of nodes and members, n = 2
S our ce: made by M.N. Kirsanov

The matrix form is used to write the equations of equilibrium of the nodes projected onto the
coordinate axes: GS =T . Here G is the matrix of directional cosines of the member forces, S is the vector
of unknown forces and support reactions, T is the vector of the applied nodal loads. Odd elements 7,, |

of this vector contain the load components along the x-axis, even 7,, — along the y-axis. The elements
of matrix G are calculated in terms of nodal coordinates and the data of lists @, i=1,.,n1. Maple uses

a relatively fast inverse matrix method to solve the matrix equation in symbolic form: S=G™'T .

3.2. Deflection

The deflection due to a uniform nodal load applied on the top chord is calculated using the Maxwell —
Mohr formula:

7
5= 5"Is" /(EF),
J=1

where S;P ) is the force in member j due to load applied at nodes i =2n-+6,..,4n+10 of the top chord,;
S is the force in the same member due to a unit force, which is applied at the middle node of the lower

chord, where the deflection is measured. Stiffness EF of all members is assumed to be the same.
The deflection is sought for an arbitrary number of panels in the truss, so first a series of solutions
is compiled for individual trusses of different orders:

:P53a3 +15¢° + 210"

8 ;
! 6h°EF
5 _ P3232a3 +438¢° +11d° +964h°
? 72h*EF ’
3 3 3
5, :P220a +127c +11Ah :
2h*EF
5 — P20064a3 +1038¢* +19d° +1364h°
! T2h*EF ’
4036a° +111¢° + 451°
85 =P B LIRS
6h’EF
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where lengths c=+a’+h’>, d =+9a” +h’ are used. The required number of members of the series to

determine its common term in this problem is twelve. Using computer mathematics methods, the common
term of the series is obtained:

Ca +C,c’ —|—Cd3+Ch3

5, =
W EF

The coefficients in this formula are obtained from the solution of homogeneous recurrence equations,
which are constructed using the operator rgf findrecur fromthe genfunc package in Maple:

C, = (308 +4(5—4(~1)")u + 4(2(=1)" 5] +(110(=1)" 218} + 105(~1)" +231)/36;

C, = (120 42((=1)" +13)n-+ (1) +33)/ 24,

4

(
C, (3+4n)( +(=1)') /144
(0

—1)"+34)n -+ 48(~1)" 93] /18,

3.3. First Frequency Estimate

Two simple methods for estimating the first natural frequency of vibration are the most popular.
They are the Dunkerley method for the lower estimate and the Rayleigh method for the upper one [17; 18].
The Rayleigh estimate is more accurate, however, its analytical expression is generally cumbersome.
In [19], a modified version of the Dunkerley method is presented, which gives a simpler and more accurate
solution than the original Dunkerley method. According to this method, the following formula is valid for
the approximate expression of the first frequency s :

K
W’ =my. 3, =mK8™ /2=mKA,, (1)
p=l1

v 2
where by the Maxwell — Mohr formula each term has the form: §, = mZ(Sof")) I, /(EF), S{P is the force

a=l1
in member o due to a unit vertical force applied at node p, I, is the length of the corresponding member, m
is the mass of the truss node. Here, unlike the original Dunkerley method, the sum is computed by the mean
value theorem. In this formula: 5™ is the maximum value of 5, , which is calculated for a particular node,

having the maximum deflection from the individual vertical force applied to the same node. Obviously,
for this problem such a node is node 743 at the mid-span of the lower chord. For numerical calculation
there is no difficulty in computing the sum in (1), however, summation difficulties arise when seeking
an analytical solution. That is why in the simplified method the sum is replaced by its average value. In this
case, of course, the property of the lower bound of the first frequency according to the Dunkerley method
is lost.

Similar to the deflection calculation, expressions A, for different numbers of truss panels are calculated

step by step:
9@’ +50 +h
' 4W’EF
A — 233a’ +66¢° +d° +41h°
2 36h°EF ’
3 3 3
A= 65a" +9¢” +h :

4h*EF
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_ 897a’ +102¢° +d° +41h°

A . ;
36h°EF

4

233a’ +13¢° +i°
A, = -
Ah*EF

9 see e

By finding the common terms of the coefficient series before the exponentials of dimensions in these
series, an expression for coefficient A, is obtained:

_ Ba'+B,c’+Bd’ + B

A, >
h°EF

where
B, = (120" 4 6(1=2(=1)" ) +4((~1)" +7)n+35(~1)" +62)36;
B, =(12n-+(=1)" +19)/24;
By =((=1 +1)/72, B, =(16(~1)" +25)/36.

Finally, according to (1):

o.=h EF
' m(4n+10)(Bla3 +B,c’ + B,d’ +B4h3) '

2

3.4. Natural Frequency Spectrum

For numerical calculation of all frequencies of the truss, the same Maple operators as for the analytical
results can be used, by entering their numerical values into the program instead of the symbolic geometric
and physical characteristics of the structure. The results of calculations of frequencies of trusses of different
orders are presented in Figure 3. The analysis was performed at £ =2.1-10MPa, F =9cm’, m=200kg,

a=3m, h=2m. Each point on the graph corresponds to the value of frequency plotted on the vertical

axis, and in the corresponding place on the horizontal axis the number of this frequency in the spectrum is
marked. All frequencies of the same truss are connected by a broken line of individual color. The figure
shows the calculations of the spectra of 12 trusses.

o,l/s n=1 n=2 n=3 n=4 n=6 n=7

n=>
00 — — — — R — o —0

n=9 n=10 n=11 n=12
o

0

13

= = O
800 |
700
600
500
400
300

200

100

10 20 30 40 50

Figure 3. Spectra of trusses of order n=1, .., 12
S ource: made by M.N. Kirsanov
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The overall picture of the frequency distribution of trusses of different orders reveals a number of
patterns. First, given the dimensions of panel length, truss height, mass and stiffness, the frequencies of
vibration are limited from above. Secondly, a jump of frequency values in the upper part of the spectrum is
evident, which is the same for trusses of different orders. There are at least two horizontal lines connecting
the points and representing almost constant values (with very small errors) of natural frequency for trusses
of different orders. These number lines are labeled o, and o, respectively, and are the spectral constants of

the truss [20; 21]. The practical meaning of these constants is obvious. To calculate this frequency in any
truss with a large number of panels, when due to the amount of calculations there are often problems with
accuracy and time-consumption, it is possible to use the solution for a similar truss with a small number of
panels by adopting in this solution the desired value lying on the same horizontal straight line as the desired
solution. For example, the value of the highest frequency for a truss with one panel (n = 1) coincides with
great accuracy for a truss with 12 panels, ® =911.08s™', the calculation of natural frequencies of which is

much more complicated than for a truss with one panel.

4. Results and Discussion

The analytical solution (2) is approximate. It should be compared with the numerical solution obtained
in Maple using the Eigenvalues operator from the linear algebra package LinearAlgebra, designed to
calculate the eigenvalues of a matrix. For the numerical solution, the algorithm for calculating the forces,
the input of node coordinates and the order of connecting the members to the nodes is the same as for the
derivation of formula (2). The numerical characteristics of the trusses are taken the same as in the con-
struction of the frequency spectra. Figure 4 shows the curves of the relationship between the first frequency
and the number of panels, obtained numerically and analytically using formula (2). The first frequency
found numerically (dashed line) is denoted as w,, the analytical solution is denoted as .. For small number
of panels the error is quite noticeable. Starting from about n = 4, the error decreases. The method used is
characterized by the fact that the curve of the analytical solution crosses the numerical solution, nominally
assumed as the exact one, several times. It is possible to estimate the error of the method more accurately by
introducing relative value ¢ =| o, —o. | /o, (Figure 5). It was obtained that the error decreases with increasing

number of panels starting from n = 5. At the same time, the relationship between the error and the truss
height 4 is uncertain: for small » the error decreases or increases when s changes. Starting from n = 5,
the error is almost independent of the truss height.

,l/s

Figure 4. Relationship between the fundamental frequency of vibration and the number of panels
S o ur ce: made by M.N. Kirsanov
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Figure 5. Relationship between the relative error and the number of panels

S o ur ce: made by M.N. Kirsanov

5. Conclusion

The considered truss configuration is more complicated than a conventional beam truss due to
uncommon supports, more typical for frames and arches: both truss supports are pinned. This complicates
the calculation of the structure, since the reactions of the supports cannot be found from the equations of
equilibrium of the truss as a whole in the general way. However, in this formulation of the problem, an
analytical solution is determined using mathematical computer software, for which it is not difficult to solve
the complete system of equilibrium equations of all nodes, including the support ones, both in numerical
and symbolic mode. On the basis of these solutions, the formula for the relationship of the fundamental
frequency of vibration and the number of panels (this is the main result) is derived in a compact form in this
paper. The deflection problem is solved in analytical form and the joint spectrum of all frequencies of
natural vibrations of trusses of different orders is numerically constructed. Characteristic features are
noticed in the spectra, the use of which in practice can significantly simplify and refine the solution.

The main results are:

1. A model of statically determinate periodic truss is proposed.

2. A formula for the first natural frequency as a function of the number of panels is derived.

3. Comparison of the analytical result with the numerical solution shows their good agreement. The
accuracy of the estimates increases with increasing number of panels.

4. Spectral constants are found in the spectrum of the natural frequencies of the truss.
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