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Abstract. The process of predicting the load-bearing capacity of eccentrically compressed circular concrete filled steel tube
(CFST) columns using machine learning algorithms is investigated. The relevance of the work is established by the need to
improve the accuracy of engineering calculations in the context of increasingly complex architectural solutions. The purpose of the
study is to develop and evaluate the effectiveness of intelligent models for reliable prediction of CFST column strength based on
key parameters of the structure and materials. The object of the study was short, eccentrically compressed CFST columns of
circular cross-section. The input parameters of the machine learning models were the outer diameter of the column section, tube
wall thickness, concrete strength, yield strength of steel and relative eccentricity. The load-bearing capacity of the column was
taken as the output parameter. CatBoost and Random Forest Regressor (RFR) algorithms with hyperparameter optimization using
the Optuna library were used for forecasting. The quality of the models was assessed using the MAE, MSE, and MAPE metrics.
As a result of the study, intelligent models were developed. The CatBoost model demonstrated better accuracy rates (MAE = 67.1;
MSE = 86.2; MAPE = 0.07%) compared to RFR (MAE = 72.6; MSE = 89.7; MAPE = 0.15%). The feature importance analysis
showed that the outer diameter of the column and the relative eccentricity have the greatest influence on the bearing capacity.
Correlation analysis confirmed the high dependence of the output parameter on these factors. The obtained results are
recommended for use in calculation modules and supporting engineering systems for design solutions of load-bearing structures.
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AHHoTanus. VccnenoBaH npoluecc NporHo3upoBaHus Hecylled cloCOOHOCTU BHELGHTPEHHO CXKAaThIX KPYIIBbIX TPYOOOETOHHBIX
xonoHH (TBK) ¢ mcnomp3oBaHHeM alrOpHTMOB MAIIMHHOTO OOy4YeHHs. AKTyalIbHOCTH PaboTHI 00yCIOBIEHAa HEOOXOIMMOCTBIO
MOBBIIIEHU TOYHOCTH MHXKEHEPHBIX PAaCu€TOB B YCJIOBHAX YCIOKHSIOLIMXCSA apXUTEKTYpHbIX pewieHuid. Llens mccnenoanus —
pa3paboTKa U omeHKa 3()(eKTHBHOCTH MHTEIUICKTYaIbHBIX MOJENEH A HaJIeXKHOTO MPOorHo3upoBanHus mpounoctd THK Ha ocHo-
B€ KIIIOYEBBIX NAapaMeTPOB KOHCTPYKLUUU U MaTepuanoB. OOBEKTOM UCCIECAOBAHUS BBICTYNMIN KOPOTKUE BHELEHTPEHHO CXKAThle
Tpy00OETOHHBIE KOIOHHBI KPYTJIOTO CEYeHHA. BXOAHBIMH mapameTpaMd Mojenell MaIlIMHHOTO OOy4eHHs SBISINCH HapY>KHBIH
JMaMeTpP CeYeHHs KOJIOHHBI, TONIIMHA CTEHKU TPYOBl, IPOYHOCTH OETOHA, PEIEN TEKYIeCTH CTalH H OTHOCHUTENBHBIN SKCICHTPH-
cuteT. B xauecTBe BBIXOAHOTrO IapaMeTpa MPUHHUMAJIAch HeCcylas CHOCOOHOCTh KOJIOHHBI JIJIsi MPOrHO3MPOBAHUS HCIONB30Ba-
muck anroputMbel CatBoost m Random Forest Regressor (RFR) ¢ onTummsanmeit runeprapaMeTpoB MOCPEICTBOM OHOIHOTEKN
Optuna. Ouenka kauectBa Mofenei nposogunacs no merpukaMm MAE, MSE u MAPE. B pe3ynbsTare uccieoBaHus pa3padoTaHbl
UHTEJUIeKTyanbHble Moaenn. Monenb CatBoost npogeMoncTpupoBaina jy4iue nokasarenu tounoctd (MAE = 67,1; MSE = 86,2;
MAPE = 0,07 %) no cpaBHenuto ¢ RFR (MAE = 72,6; MSE = 89,7, MAPE = 0,15 %). AHanu3 Ba)XHOCTH NPU3HAKOB I1OKA3aJ,
4TO HauOOJBbIlIEE BIUSHUE HAa HECYIYIO CIIOCOOHOCTh OKa3bIBAIOT HApPY)KHBII TMaMeTp KOJOHHBI U OTHOCHUTEIbHBIN AKCIEHTPUCHU-
TeT. KoppensnnoHHBIN aHAIH3 TOATBEPANI BEICOKYIO 3aBHCHMOCTD BBIXOJHOTO MapameTpa OT 3TuX (akropos. I[lomydeHHsre pe-
3yJIbTaTbl PEKOMEHAYIOTCSA K HCIIOJIb30BAHUIO B PACUCTHBIX MOAYJISAX W MHKXCHCPHBIX CUCTEMaX IMOAACPIKKU IPUHATUSL pemeHHﬁ
MIPY MPOEKTUPOBAHNHU HECYIINX KOHCTPYKLNH 3TaHUN U COOPYKEHHM.

KuroueBbie cioBa: Monenu MammHHOro oOyuenusi, CatBoost, Random Forest, Hecymas crocoOHOCTh, HHTEIICKTYaIbHBIC
MoJen

3asiBiieHHe 0 KOH(UIMKTE MHTEPECOB. ABTOPHI 3asBISIIOT 00 OTCYTCTBHU KOH(INKTA HHTEPECOB.

Brkaag aBropoB: Konopamvesa T.H. — GpopMupoBaHUE OCHOBHOM KOHIETIIIMH, [IETH U 3a1a9 UCCIICIOBaHUs, IIPOBEJCHUE pacye-
TOB, aHAJIM3 PE3YJIbTATOB MCCIEJOBAaHUMN, HanMcaHue Tekcra; Yenypuenko A.C. —— Hay4qHOE PYKOBOJICTBO, 10pabOTKa TeKCTa, KOp-
PEKTHPOBKa BBIBOJIOB; A3ble6 b.M. — nopaboTka TEKCTa, UTOTOBBIC BBIBOJIBI.

Hoas umurupoanusi: Kondratieva T.N., Chepurnenko A.S., Yazyev B.M. Predicting the strength of eccentrically compressed short
circular concrete filled steel tube columns // CTpouTenbHass MexaHUKa WHXKEHEPHBIX KOHCTPyKUUi u coopyxkenuid. 2025. T. 21.
Ne 3. C. 231-241. http://doi.org/10.22363/1815-5235-2025-21-3-231-241

1. Introduction

Concrete filled steel tube (CFST) structures are widely used in construction due to their high strength,
stiffness and cost-effectiveness, as well as good seismic stability and resistance to external factors. In [1] a
modern review of publications on concrete filled steel tube columns, experimental and analytical basis of
research under static and dynamic loads are presented. CFST elements can also be used in truss structures
that can withstand high loads [2]. Concrete filling of steel structures increases the compressive strength of
the upper chord of steel tube trusses and prevents local buckling of the tube wall.
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A comprehensive study of the compressive load-bearing capacity of concrete filled steel tube columns
is presented in [3]. In [4], a study of the efficiency of circular short CFST columns under axial load is
carried out using thirty specimens of different types. In [5], the test results of twelve short CFST columns
with circular steel casing and twelve square short columns subjected to axial compressive loading are
presented. In addition to the experimental study of mechanical properties of concrete CFST column
structures [6—8], it is necessary to create systems of practical recommendations for optimal design, analysis
[9; 10] and application of such columns in various construction conditions [11-13]. The solution of
problems of similar type has already attracted the attention of the authors of [14-16], where machine
learning methods were used to obtain empirical formulas and statistical models for predicting the strength
of CFST columns of square and circular section. The developed models show noticeable improvements in
the prediction accuracy of model features [17], but their effectiveness depends largely on the quality of the
initial data, the choice of algorithms, and the optimization of hyperparameters [18; 19]. In addition, it is
necessary to consider the interpretability of models [20-22], their ability to generalize to new data, and their
robustness to changes in input parameters [23-25].

Most of the existing machine learning models for predicting the load-bearing capacity of CFST
columns are based on experimental data [26-28]. At the same time, experiments are usually conducted on
specimens of relatively small size compared to real structures, which reduces the accuracy and limits the
applicability of the models in engineering practice. Thus, there is a gap in the scientific literature associated
with the lack of approaches allowing to create ML-models based on more generalizable and parametrically
flexible data sources.

This study proposes construction of a predictive model based on the results of finite element modeling
using a simplified methodology that has been previously tested on experimental data. This approach avoids
the limitations inherent in laboratory testing and allows for a wide variation of parameters, which is critical
for building a universal and engineerable model.

The purpose of this study is to develop reliable machine learning models for predicting the load-
bearing capacity of eccentrically compressed circular concrete filled steel tube columns. The study is based
on a hybrid approach that combines finite element modeling to form a training data set and further training
of artificial intelligence models using the results of numerical experiments. This approach was previously
successfully applied in [29] for predicting the bearing capacity of centrally compressed columns of square
cross-section. The advantage over direct finite element analysis is the very high speed of the trained models:
results for several sets of input parameters can be obtained in a fraction of a second by simple matrix
multiplication. Another important advantage is that machine learning models allow to estimate the degree of
significance of each input parameter in determining the load bearing capacity, which makes them
particularly useful in engineering analysis and design.

2. Methods

To build the machine learning model, a database of 374975 numerical experiments using the finite
element method according to the methodology presented in [30] was prepared for circular CFST columns.
The methodology presented in [30] was previously tested on experimental data for 265 centrally
compressed columns and 93 eccentrically compressed columns [31].

The following values were taken as the input parameters of the models: outer diameter of cross-section
D, (mm); wall thickness of circular steel tube ¢, (mm); yield strength of steel R (MPa); compressive

strength of concrete R, (MPa); relative eccentricity e,/ D, (dimensionless parameter). The output

parameter of the model is the critical load N, (kN).

Such parameters as initial modulus of elasticity of concrete and tensile strength of concrete were not
included in the number of input parameters because they are correlated with the compressive strength grade
of concrete. The empirical formulas given in [30] were used in the finite element analysis to determine these
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parameters. In addition, the modulus of elasticity of steel was not included in the number of input
parameters, because it has a weak influence on the compressive strength, and also has a small range of
values, varying in the range of 195-210 GPa. The concrete tensile strength parameter, according to
engineering standards, also has no significant effect on the column behavior in compression and was
excluded from the final set of features. Preliminary analysis using a trained CatBoost model showed that
when these parameters were varied by +10%, the change in the predicted load bearing capacity was less
than 1%, which is much lower than the contribution of the main geometric and strength characteristics.

In addition, only short columns, for which deflection does not significantly increase the eccentricity of
the axial force were considered, and the design length of the element was also not included as an input
parameter.

For building machine learning models, algorithms based on ensemble principles were chosen: CatBoost
as a representative of gradient boosting and Random Forest Regressor as a representative of bagging. These
algorithms demonstrate high accuracy and stability when working with tabular data, as well as have built-in
mechanisms of model interpretation through the assessment of feature importance. The choice of CatBoost
was additionally motivated by its high performance on sparse and categorical data, as well as low sensitivity
to hyperparameter tuning. To increase the validity of the choice, other algorithms were also tested:
XGBoost, LightGBM and the support vector regression (SVR). According to the test results, CatBoost
showed the best values of MAE, MSE and MAPE metrics among the considered algorithms, which became
the basis for its selection as the main method of boosting in this work. Random Forest was included as a
benchmark algorithm for bagging-based ensembling, which is robust to overtraining and does not require
feature scaling.

Table 1 partially summarizes the dataset used to train the artificial intelligence models.

Table 1
Fragment of the training data array
No. D,,vm/mm | ¢, uv/mm R, ,Mila/MPa R,,mna/mpa | e,/ D, N,,, xH/kN
1 102 1.8 240 10 0 229.3777
2 102 1.8 240 10 0.04 208.9631
3 102 1.8 240 10 0.08 186.9428
4 102 1.8 240 10 0.12 168.3632
5 102 1.8 240 10 0.16 152.7655
6 102 1.8 240 10 0.2 139.9204
7 102 1.8 240 10 0.24 128.6809
8 102 1.8 240 10 0.28 118.8176
9 102 1.8 240 10 0.32 110.56
10 102 1.8 240 10 0.36 103.22
11 102 1.8 240 10 0.4 96.568
374965 1420 32 800 66 0.44 90861.91
374967 1420 32 800 66 0.48 85727.21
374968 1420 32 800 66 0.52 81039
374969 1420 32 800 66 0.56 76797.29
374970 1420 32 800 66 0.6 72778.83
374971 1420 32 800 66 0.64 68983.61
374972 1420 32 800 66 0.68 65634.89
374973 1420 32 800 66 0.72 62509.42
374974 1420 32 800 66 0.76 59607.2
374975 1420 32 800 66 0.8 56928.23

S our ce: made by T.N. Kondratieva
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To improve the quality of the models, the correlations between the variables were analyzed. Stratified
sampling methods were used to eliminate imbalances in the data, which allowed to distribute the values of
the output parameter evenly. Additionally, a multicollinearity check was performed to eliminate redundant
features and increase the robustness of the models. The resulting cleaned and balanced dataset became the
basis for training and testing of the machine learning algorithms.

Gradient boosting algorithms (CatBoost, XGBoost) and Random Forest Regressor (RFR) bagging
model were used to predict the bearing capacity of CFST columns. The quality of the models was assessed
using MAE, MSE and MAPE metrics. In addition, feature importance was analysed based on the
contributions of the parameters to predictions.

To improve model accuracy and prevent overtraining, the hyperparameters of the CatBoost and
Random Forest Regressor algorithms were optimized. Optimization was performed using Grid search
combined with 5-fold cross-validation, which ensured model robustness to random data fluctuations. Ranges
of variation of hyperparameters were determined on the basis of preliminary analysis of model behavior on
small samples and recommendations from the official documentation of CatBoost and Scikit-learn libraries.

For CatBoost, the parameters varied as: number of iterations — 100-5000; depth — 4—12; learning
rate — 0.01-0.3; coefficient of the L2 regularization term in the loss function — 1.9—4.9.

For Random Forest Regressor: number of trees — 50-500; maximum depth — 3-20; minimum
number of samples to be in the final node — 1-3.

The best combinations of hyperparameters were selected based on minimizing the MAE and MAPE
errors obtained as a result of cross-validation.

For the trained models, feature importance was also analyzed by evaluating the degree of influence of
each input parameter on the predictions. This approach allowed to determine which characteristics have the
most significant effect on the final value of the bearing capacity.

3. Results and Discussion

The statistical characteristics of the original data set are presented in Table 2, showing the ranges of
each characteristic. The main indicators are: sample size, sample mean, deviation, extremes of the variables.
The set of these indicators helps to conduct statistical analysis of variables, to determine their scatter
relative to their center, to show the asymmetry of distribution, to derive the laws of distribution of ordered
series.

Table 2
Table of statistical characteristics

Index D,, mm t,, mm R,,MPa R,, MPa e,/ D, N, kN
Count 374976.00 374976.00 374976.0 374976.00 374976.00 374976.00
Mean 444.10 10.61 520.0 38.00 0.40 10009.60
Standard Deviation 361.76 7.50 183.3 18.33 0.24 16539.69
Min 102.00 1.80 240.0 10.00 0.00 59.41
Max 1420.00 32.00 800.0 66.00 0.80 223247.94

S ource: made by T.N. Kondratieva

Since machine learning is essentially a multivariate interpolation, reliable model performance can be
guaranteed only within the range of input parameter variation in the training data set. The minimum and
maximum values of input parameters specified in Table 2 almost completely cover the possible range of
variation of the characteristics of CFST columns.

Figure 1 shows the correlation between the input and output parameters of the model. There is almost
no strong correlation between the input parameters except for the relationship between the wall thickness of

PACYET ¥ MPOEKTVPOBAHVE CTPOWUTENbHbIX KOHCTPYKLIA 235



Kondratieva T.N., Chepurnenko A.S., Yazyev B.M. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(3):231-241

the circular steel tube and the outer diameter of the cross-section p, ,,, = 0.8. This is due to the fact that the
P p

geometric characteristics of steel tubes presented in GOST 10704-91' were used in the formation of the
training data set. In this range, there is a tendency to increase the minimum and maximum wall thickness of
the tube with increasing diameter to ensure the necessary stiffness and stability of the structure.

A correlation relationship between the input and output parameters of the model is observed: the wall
thickness of the circular steel tube and the load-bearing capacity of CFST columns p, ,, ~=0.6; the outer

diameter of the cross-section and the load-bearing capacity of CFST columns Po, /N, = 0.8.This result is

expected from the standpoint of structural mechanics, since an increase in the wall thickness and outer
diameter of the tube leads to an increase in the geometric characteristics of the equivalent cross-section,
affecting the performance of the structure under eccentric compression: moment of inertia and area.

As a result of the correlation analysis, it was found that, although most of the parameters are relatively
independent of each other, the main geometric characteristics of the column (outer diameter and wall
thickness of the tube) have the greatest influence on its load-bearing capacity. Thus, it is important to
consider the primary significance of these parameters when developing predictive models and designing
CFST structures.

The absence of strong correlation between most of the input parameters of the tested model for
predicting the load-bearing capacity of eccentrically compressed circular CFST columns indicates that each
of these factors makes an independent contribution to the formation of the load-bearing capacity of the
structure. This indicates a complex interaction of variables, in which the strength of columns is determined
not by one dominant parameter, but by their combined influence.

Dy, mm ¢, mm Ry, MPa Ry, MPa eo/ Dy Nult, Dy
/ L 1.0
Eﬁ 2.2e-14 1.7e-15
< 0.8
=)
=)
= 0.6
<
[}
=
< - 0.4
<
[l
=
I~ -0.2
Qm .
S - 0.0
E’\
E - =0.2

Figure 1. Correlation matrix
S ource: made by T.N. Kondratieva

The results of the feature importance analysis obtained using CatBoost and Random Forest Regressor
(RFR) machine learning models are shown in Figures 2 and 3. They allow to identify differences in the
approaches of the algorithms to data analysis and to determine the key parameters affecting the load-bearing
capacity of eccentrically compressed circular CFST columns.

The CatBoost model demonstrated a more balanced and engineering-based assessment of the influence
of factors.

"' GOST 10704-91. Electrically welded steel line-weld tubes. Moscow: Standardinform Publ.; 2007. (In Russ.)
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Figure 2. Feature Importance Assessment for CatBoost
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Figure 3. Feature Importance Assessment for RFR

S our ce: made by T.N. Kondratieva

The greatest influence is exerted by the outer diameter of the column cross-section (97%), which is
reasonable, since an increase in diameter leads to an increase in the cross-sectional area and, consequently,
increases the bearing capacity.

The relative eccentricity (60%) and tube wall thickness (40%) contribute significantly. The first
parameter indicates the sensitivity of the column to eccentric loading, which is particularly important for
complex loading conditions. The second parameter affects the resistance to local buckling and the overall
interaction of the steel tube with the concrete.
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Other significant parameters are the compressive strength of concrete (37%) and yield strength of steel
(22%), which are the key material parameters that determine the behavior of the loaded column.

The Random Forest Regressor (RFR) model showed a strong dependence on a single parameter, the
section outer diameter (97%), while other attributes such as wall thickness (0.7%), concrete strength (0.5%)
and steel yield strength (0.2%) were rated as practically insignificant. This may indicate the limited ability
of RFR to detect complex nonlinear relationships and interactions between attributes, which reduces its
applicability for engineering analysis and prediction in conditions of high variability of design parameters.

The optimal parameter values obtained in the process of model training are presented in Table 3.

The quality assessment of the models is presented in Table 4.

Table 3 Table 4
Optimal values of model parameters Model quality metrics

Model Parameter Value Metric CatBoost RFR
Iterations 1487 MAE 67.1 7.6
CatBoost Depth 8 MSE 86.2 89.7
Learning rate 0,4 MAPE (%) 0.07 0.15
12 leaf reg 2,17 7 0.99 0.98

N estimators 150 ' '

RFR Max depth 16 Source: made by T.N. Kondratieva
Min samples leaf 2

S our ce: made by T.N. Kondratieva

The CatBoost and Random Forest Regressor algorithms are trained in a search for optimal
hyperparameters, where each combination of parameters is tested for the smallest error. Higher mean
average errors (MAE) for structural engineering problems are acceptable in both cases and are associated
with the large range of the N, load values and their order of thousands of kN. High mean square errors

(MSE) indicate the presence of outliers and indicate single, isolated large errors. MSE by itself is less
informative in this case, but in combination with MAPE it indicates reasonable stability of the models. The
MAPE values, which are less than 1%, indicate that the models are very accurate in predicting the bearing
capacity values.

To increase the rigor of model comparison, the statistical significance of differences in MAE, MAPE,
and R? between CatBoost and Random Forest Regressor (RFR) was analyzed. For this purpose, bootstrapping
(1000 iterations) and nonparametric Wilcoxon test for paired samples on 5-fold cross-validation data were
used.

Statistical significance of differences was confirmed by nonparametric Wilcoxon test with confidence
intervals calculated by bootstrapping method is presented in Table 5.

Table 5
Comparison of models with confidence intervals and p-values
Metric CatBoost RFR Difference 95% p-value
95% CI) (95% CI) (CatBoost — RFR) CI of difference (Wilcoxon)
MAE 67.1[64.3-70.5] 72.6 [69.8-76.1] =55 [-6.8; =3.9] 0.018 <0.01
MSE 86.2 [81.0-91.7] 89.7 [85.3-94.6] =35 [-5.2;-1.7] 0.041 <0.05
MAPE (%) 23.1[21.2-254] 31.5[29.4-34.2] —0.08 [-0.10; —0.05] 0.003 <0.01
R? 0.94 [0.91-0.96] 0.86 [0.83—0.89] +0.01 [+0.005; +0.02] 0.002 < 0.05

238

S our ce: made by T.N. Kondratieva

ANALYSIS AND DESIGN OF BUILDING STRUCTURES




Kondpameesa T.H., YenypHenko A.C., 513biee b.M. CTpouTenbHasi MexaHuka MHKEHEPHbIX KOHCTPYKLMIA 1 coopyxeHuid. 2025. T. 21. Ne 3. C. 231-241

Table 5 shows the values of quality metrics of CatBoost and RFR models, as well as statistical analysis
of differences between them based on bootstrapping and nonparametric Wilcoxon criterion. The obtained
95% confidence intervals of the differences of metrics between CatBoost and RFR confirmed the significant
advantage of CatBoost, additionally, CatBoost demonstrates statistically better results in terms of MAE,
MAPE and R? (p-value < 0.05), which confirms its advantage as a more accurate and stable model in this
task.

Figures 4 and 5 show histograms of errors: actual values along the vertical axis, predicted values along
the horizontal axis. The use of CatBoost algorithm allowed to achieve almost perfect coincidence between
target and predicted values. Such high quality of prediction can be explained by the high smoothness of the
data in the training array: the results of finite element analysis, unlike the experimental data, exclude
random errors associated with measurement, scatter of material characteristics, etc. The results of the finite
element analysis are not affected by random errors. In Figure 5, the deviation of points from the Actual =
Predict line is larger compared to Figure 4. Thus, if choosing between CatBoost and Random Forest
Regressor algorithms, preference should be given to the former. A similar result suggesting the better ability
of CatBoost to determine complex nonlinear relationships in comparison with RFR was obtained earlier in
[32] for another problem in the field of application of wireless sensor networks. This is because the
CatBoost algorithm is based on the use of gradient boosting and has a built-in mechanism to deal with
overtraining. Since CatBoost has shown the best quality of prediction, it is CatBoost that should be relied on
when evaluating feature importance. CatBoost reveals the importance of even weak features without
overfitting on them, RFR can ignore weak features because of averaging over trees.

Thus, the CatBoost model provides a more informative and interpretable approach to predicting the
bearing capacity of CFST columns, taking into account a combination of factors, which makes it more
preferable in the tasks of engineering design and analysis. CatBoost model also allows analyzing the
influence of random factors. For this purpose, it is enough to pass the reference input values through the
trained model, and then set random deviations for input parameters and see how the result will change.

Test for Catboost Test for RFR
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Figure 4. Error histogram for CatBoost Figure S. Error histogram for RFR
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Thus, the comparison of CatBoost and Random Forest Regressor models has shown the advantage of the
former both in accuracy and stability of prediction. This is due to the fact that CatBoost implements an advanced
gradient boosting scheme with efficient processing of sparse and categorical data, and also has built-in
mechanisms to combat overtraining. In contrast, Random Forest algorithm as a bagging method is prone to
averaging and may lose sensitivity to weak but significant features. In spite of higher interpretability of Random
Forest trees, CatBoost turned out to be the most appropriate for the task of estimation of load-bearing capacity
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of concrete filled steel tube columns, which is confirmed by low values of MAE, MSE and especially MAPE
(less than 1%). The obtained results confirm the reasonableness of CatBoost as the main gradient boosting
algorithm in this work. Random Forest, in turn, was used as a reference model to evaluate the relative efficiency
of ensemble methods.

4. Conclusion

The main conclusions of the study are:

1. A machine learning model for predicting the load-bearing capacity of eccentrically compressed circular
concrete filled steel tube (CFST) columns was built and validated.

2. The dominant influence of geometric characteristics (outer diameter and wall thickness) compared to the
mechanical characteristics of materials was established.

3. CatBoost algorithm showed the best results among the tested models.

4. An accessible database suitable for further research and training of ML-models was formed and proposed.

In further studies it is planned to expand the use of machine learning methods in analyzing the characteristics
of CFST structures, including their operation in extreme conditions (fire, dynamic effects). The solution of these
issues will allow to expand the scope of application CFST columns and increase their reliability in modern
construction projects.

Data Accessability Statement

The training dataset is available for download at: https://disk.yandex.ru/djVWmibREM10p3Q
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