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Abstract. Bridge structures are often subjected to extreme conditions such as rough weather, earthquakes, impacts from
traffic accidents, and even blasts. Such extreme loads can cause damage to the anchorage zones as a result of high stress
concentration and can lead to cable loss. Such extreme loads can cause dam-age to the anchorage zones as a result of a high-
stress concentration and can lead to cable loss. One of the main targets of this study is to develop an analytical method that
increases our understanding of the behavior of long-span cable-supported bridges in the case of the failure of one or several
cables,through this method, a formula can be deduced to calculate dynamic amplification factor (DAF) more accurately,
which could be useful for academic research. In this study, a parallel-load bearing system is considered as a conceptual
model of long-span cable-supported bridges. The objective is to investigate the structural robustness of long-span cable-
supported bridges in a cable-loss scenario. The conceptual model consists of a beam suspended from cables (tension
elements). A simplified model is intentionally selected to make the analytical approach easier. If examining the simplified
model shows a certain phenomenon, a similar phenomenon in more sophisticated models can also be expected. The study
considers multiple cable failures and employs an analytical approach, developing an approximation function for stress
magnification factor in cable break scenarios, using least squares method. The proposed approximation function is accurate
and less than 5% error-free in all tested systems, except for minor B values, and increasing B reduces stress magnifica-tion
factor. The parameter 3 influences the calculation of the cable load. For systems with high B values, smaller design loads are
necessary, allowing long-span cable-stayed bridges to be segmented into zones with varying B values. This approach enables
the determination of minimum design loads for each zone, ultimately reducing cable design costs in cases of cable loss.

Keywords: bridge structures, progressive collapse, cable-stayed bridges, load conditions, analytical method, cable-loss
scenario
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AHHoOTanms. MOCTOBBIE COOPYKEHHS YacTO MOABEPraroTCs BO3ICHCTBHIO SKCTPEMABHBIX YCIOBHHM, TAaKHX KaK HEMOroJa,
3eMJICTPSICEHUS], I0POKHO-TPAHCIIOPTHBIC MPOUCIIECTBHSA, & TAKXKE B3PBIBBI. DKCTPEMAaJbHbIC HATPY3KH MOTYT MPHBE-
CTH K MOBPEXKICHHUIO 30H KPEIUICHHS B pe3yIbTaTe BEICOKON KOHIEHTPALMU HAIPSHKCHNUH M MOTYT NPHUBECTH K HOBPEXkKIIe-
HUIO CTaJbHBIX TPOocoB. OCHOBHAs L€JIb HCCICIOBaHUSI — Pa3pa00OTKa aHAIUTHYECKOTO METO/a, PACIIUPSIOIETrO MOHMMa-
HHUE TIOBEICHHUS MOCTOB C JAJMHHBIMH MPOJIETAMH Ha BAHTOBBIX OMOPAxX B ClIydae OTKa3a OJHOIO WJIM HECKOJBKHX BaHT.
C IOMOIIBIO 3TOTO METO/Ia MOKHO BBIBECTH (popMyITy st 0ojiee TOYHOro pacyera Kod(pPHUIUESHTa TUHAMHUUECKOTO YCHIIe-
Hud. CrucTeMa ¢ mapaulelIbHOW Harpy3KH paccMOTpeHa KaK KOHLENTyalbHas MOJETb JJIMHHONPOJIETHBIX MOCTOB HA BaHTO-
BBIX omnopax. Takxe HccleJoBaHa HAJCKHOCTh KOHCTPYKIHHA MOCTOB C JUIMHHBIMU MPOJICTAMH, OMUPAOIIUXCS Ha BAHTBI,
B clly4yae 1norepu BaHTOB. KoHlenTyanbHas MOJENIb COCTOMT M3 Oaliky, TO/IBEIICHHOW Ha Tpocax (HATSIKHBIX JJIEMEHTAX).
BriGpana Mozens, ynpomniaromas aHaIuTuaeckuii nogxon. Eciu u3ydeHne ynpoueHHoOH MOJIeNH OKa3bIBaeT BO3MOXKHOCTh
OKUJATh aHAJIOTUYHOTO SBJICHUS B 0OJEe CIIOKHBIX MOJENAX. PaccMOTpeHbI MHOXECTBEHHBIC OTKJIIOHEHHS Kabels.
Vcnonb30BaH aHAIMTHYECKUH TMOAXOJ B pa3pabOTKe (YHKIMHU armpoOKCUMbI s KOO(Q(UIIMEHTOB yBETHUCHUS HAIIPsIKe-
HHS IIpU OOpBIBE KaOews ¢ UCIOJIb30BaHMEM METO/a HauMEHbBLIETro KBajpara. [IpeioixeHHas anmpokcUMupyromas QyHk-
U SBISIETCS TOYHO M 6e30mMO09HOI MeHee 4eM Ha 5 % BO BCEX NMPOTECTHPOBAHHBIX CUCTEMAaX, 33 HCKIIOYCHUEM He3Ha-
YHUTEJIBbHBIX 3HaYCHHH [, a yBenmmueHue 3 yMeHbInaeT Ko3hGHIUEeHT yCuIeHus HanpspkeHus. [lapaMmeTpsl B BIHSAIOT Ha pac-
48T Harpy3kd Ha KaOenb. CHCTEMbI BBICOKMX 3HaYeHUH [3 TpeOYIOT MEHBLINX MPOEKTHBIX HArpy30K, KOTOPbIE IMO3BOJISIOT
CErMEHTHPOBATh BaHTOBBIH MOCT ¢ OOJBLIMM MPOJIETOM HA 30HBI Pa3NIMYHBIX 3HaueHWil . Takoi MoAXox AaeT BOZMOXK-
HOCTb ONPEJCIUTh MUHUMAIBHYIO MPOCKTHYIO HArPY3Ky Ha KaXKAYH0 30HY, YTO B PE3YJIBTATE CHIIKACT 3aTPaThl HA MOHTAXK
KabeJs npu rnorepe Kabenei.

KiroueBble c10Ba: MOCTOBBIE KOHCTPYKIHH, IIPOTpECCUpYIOIIee 0O0pYIIEHHE, BAHTOBBIE MOCTHI, YCJIOBUSI HATPYy3KH, aHa-
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3agBaenne 0 KOHGINKTE HHTEPECOB. ABTOPBI 3asBIISIOT 00 OTCYTCTBUU KOH(IMKTA HHTEPECOB.

BkJian aBTopoB. Axmed A.P.— cbop, ananu3, oopadoTka gannbiX. Katic K.A.A. — KoHIENINS U pa3paboTKa eMbl HCCIIEN0-
BaHUs, cOOp, aHaNM3 1 00paboTKa HaHHBIX. Epmowun H.A. — KOHIENINSA U HAYYHOE PYKOBOJICTBO

Jast mmrupoBanns: Ahmed A.R., Qais Q.A.A., Yermoshin N.A. Development of analytical method for cable-stayed bridges
considering local damages caused by failure of supporting cables // CtpouTenbHas MexaHUKa HHKEHEPHBIX KOHCTPYKIHT
u coopyxennit. 2024. T. 20. Ne 5. C. 418-432. http://doi.org/10.22363/1815-5235-2024-20-5-418-432

1. Introduction

Long spans characterize cable-stayed bridges. They are widely used due to their aesthetic typology and
economic efficiency. As a result of constant improvements in design and construction technology over the
past decades, the number of cable-stayed bridges and the length of their spans have increased rapidly. For
example, the Russian Bridge is the longest cable-stayed bridge with a main span of 1.104 meters. At the
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same time, it should be noted that cable-stayed bridges are not highly resistant to destructive factors. This is
because the cable-stayed bridge framework has more load-bearing structural elements. Failure of each
of them due to the impact of dangerous natural processes (landslides, flooding, avalanches, seismicity,
abrasion, cryogenic processes, etc.), as well as the lack of proper maintenance, can cause failure of the
bridge. As a result of extreme external loads, progressive collapse may occur, caused by the loss of operability
of one or more load-bearing structural elements. The progressive collapse in this context is described as an
initial local failure that propagates from element to element until the entire structure or a disproportionately
large part collapses [1]. The issue of progressive failure of cable-supported bridges has been studied in
some works recently [2—12], the facts and circumstances leading to structural failure have been examined
(see Table 1).

Table 1

A detailed analysis references

Sources

Studied

The results

Applied three earthquake accelerations to the structure and simulated
the failure of two critical cables simultaneously

The study indicates that the conditions experienced during the
Tabas and Loma Prieta earthquakes could result in progressive
collapse, whereas the structure was able to endure the removal of
two cables during the Bam earthquake. To prevent such destruction,
six base isolations were incorporated beneath the structure. Analyses
demonstrate that this strategy can reduce the axial force amplitude
below its ultimate strength, thus preventing progressive collapse

Studied the modeling and analysis of a typical cable-stayed bridge
through two important analytical procedures, i.e., nonlinear static
and nonlinear dynamic. Furthermore, the response of the structural
model is discussed for multiple types of cable loss cases

The study identifies two distinct progressive collapse patterns for
nonlinear static and dynamic procedures, particularly in the context
of dynamic analysis incorporating a dynamic unloading function.
Findings reveal that the likelihood of failure progression in the
cable-stayed model diminishes when the failed cables are situated
closer to the pylon

Describe a methodology for performing probabilistic progressive
collapse analyses and calibrating incremental analysis criteria for
highway bridges accounting for the uncertainties in the applied
loads and the load-carrying capacities of the members as well as
the system

In the future, such criteria can be used to propose progressive
collapse analysis guidelines for bridges that are compatible with the
principles of Load and Resistance Factor Design (LRFD) methods

Discussed the cause of the failure of the Hongqi Bridge and better
understood it based on numerical results

The model was used to simulate the bridge collapse caused by
demolition, and the domino-type progressive collapse of the bridge
was captured. Possible mitigation methods for such progressive
collapses of multi-span bridges were proposed

Studied the development of a practical method for the optimization
of cable distance in cable-supported bridges using the robustness
index

The results showed that the optimum cable distance fundamentally
depends on the assumed number of failed cables. As the cable
distance decreases, the construction cost decreases. This cost reduction
continues until the cable distance becomes shorter than 5 or 10 m
corresponding to each case

Proposed an empirical equation that allows for the computation of
the dynamic amplification factor (DAF) from the maximum norm
stress in the static linear elastic analysis of the damaged model
with a member removal

A total of 30 illustrative cases for two typical steel truss bridges are
investigated to obtain the data points for the empirical equation.
The proposed empirical equation is the enveloped line offset from
the best-fit line for the data points in illustrative cases

The failure due to the loss of a cable

Can be prevented by designing the bridge for the loss of cable loads
and presenting the corresponding nonlinear dynamic analyses.
This procedure should be complemented by protecting the cables
from vehicle collisions and malicious action

Presented a study of the structural answer of cable-stayed bridges
when the sudden loss of one of their stays takes place. The analysis
has been accomplished through two different methods: utilizing a
dynamic analysis and carrying out a procedure, included in the P.T.I.
(2000) and S.E.T.R.A. (2001) recommendations

The different results of bending moments in deck and pylons and
tension force in stays obtained by these two methods are compared
and analyzed

[10; 11]

Studied the dynamic response of cable-stayed bridges to the sudden
loss of a stay. Its objectives are to quantify the relative importance
of the accidental ultimate limit state of failure of a stay in the
design of the bridge and to determine the safety level provided
by the simplified procedure of using static analysis with a D.A.F.
of 2.0

A static analysis with a D.A.F. equal to 2.0 can be considered as
a safe method for evaluating the stress on the stays not only because
of the sign of the error but also because of its small magnitude

[12]

Review the facts and circumstances leading up to the failure so that
readers will better appreciate the problems that arose from the
complex interactions between design, specifications, construction,
and quality control

Good engineering design and execution often goes unnoticed;
mistakes can result in dire consequences, and the Hyatt skyway
collapse is an excellent example of the consequences of a “simple
mistake”
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Accordingly, the Post-Tensioning Institute (in united states) PTI (2007) guideline recommends to
thoroughly investigate the implications of different cable loss scenarios by equivalent static analyses in
conjunction with DAF. The typical DAF value for building and bridge structures adopted by existing
standards and guidelines is DAF = 2.0, however, for cable-stayed bridges with high degrees of redundancy,
applying a constant DAF = 2.0 in conjunction with equivalent static analysis has been questioned. The
analysis of the sudden loss of cables in cable-stayed and suspension bridges is very important and has
caught the attention of researchers in recent years [13]. Research related with the response of long-span
cable-supported bridges to cable failure is infrequent, this study as aim to build up an analogue way by
which we can have a good perception about the phenomenon behaviour and derive an expression for DAF
more precisely

2. Materials and Methods

2.1. Cable Failure in Mathematical Models of Cable-supported Bridges

Figure 1 shows the conceptual model, which consists
of a continuous beam suspended from tension elements |’
(cables). I ||||
The parallel load system is a conceptual model nlll”"l | |||| ||II|
for cable-supported, long-span bridges. The aim is to
investigate the structural durability of long-span cable-
supported bridges in a cable loss scenario. The con-
ceptual model consists of a beam suspended from
cables (tension elements). Parallel load-bearing systems
are structural systems with load-bearing members that
are similar in type and function. These systems are
characterized by their ability to configure alternative
load paths. Cable-supported bridges, including sus-
pension and cable-stayed bridges, are good examples
of such a structural system. In suspension and cable-
stayed bridges, the hangers and anchor cables are

j Rigid Sum“ n
EEn —

K| k{ k] k| &k{ K E K |k K |k K K

parallel elements that carry loads, respectively [15]. i Girder
It should be noted that in some cases torsion can ey |

be neglected. For example, in single-cable flat systems d

with box girders or double-cable flat systems with  Figure 1. The system of eight cables and its design features

edge girders, the effect of torsion is negligible. In this Source: made by M. Haberland et al. [14]

study, torsion is neglected. It is worth emphasizing that

although the main idea comes from a suspension bridge, the simplified model can be used for any parallel
load-bearing system, including cable-stayed bridges. It is assumed that all cables have the same axial
stiffness, and the stiffness of the girders is the same in all cross sections. The axial stiffness of the cables
must be determined considering the entire structural system of a real bridge. The target is to find a general
equation for the stress increase ratio of a critical element due to cable failure. Thus, the number of cables
may vary. In the first step, it is assumed that only one cable fails, and then an equation is derived for the
stress increase ratio of the critical cable. In the second stage, the number of failed cables increases. Finally,
an equation is obtained for a system including 2n cables in case of failure of m cables. In the simplified
model, the distance between two adjacent cables is L, the axial stiffness of the cable is K, and the flexural

stiffness of the beam is K, =12EI / I’ . The failing cable is in the center and the whole system is symmetrical.

The load carried by the failing cable is F, and the absorbed load in the critical cable due to cable rupture
is F}, and the corresponding absorbed loads in other cables on either side of the center are F, to F,
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(corresponding to K, toK, ). The calculated forces in the cables, and therefore the calculated bending

moment in the girder, are the increased force in the cable and the increased bending moment due to cable
rupture [16; 17].

2.2. Analytical Approach for Determining Coefficient
of Stress Increase in Critical Cable due to Cable Loss

Considering the system’s symmetry, Figure 1 shows a straight symmetric system that can be solved
using boundary conditions and the overlay principle. To further explain the mathematical method, an eight-
cable system will be used as an example. The elastic properties of the beam are explained as follows:

d*v

M(X)ZEIF,

(D
where EI is the girder flexural stiffness; N m? I is the girder moment of inertia, m*, v is the vertical
displacement, m, and x is the distance of the section from the left end of the beam, m. M(x) is the bending
moment depending on x, arising due to damage to the central cable, N m, which can be determined as
follows:

0<x<L;, M(x)=F,x; ()
L<x<2L; (x)=Fx+F,_ (x—L); (3)
2L<x<3L; M(x)=Fx+F, (x—=L)+F, ,(x-2L); 4)
(n=1)L<x<nL;  M(x)=Fx+F,_(x=L)+F, ,(x=2L)+-+F(x—(n-1)L). (5)

The solution to the Eight-Cable Problem:

2
0<x<L; M(x):F4x:E1d—;. (6)
dx
Integrating Equation 6:
x? dv
JM(x)dx=fF4xdx:F4?+Cl=El—x. (7
Integrating Equation 7:
3
ffM(x)dxszF4xdx=F4%+ Cix+C,=Elv, ®)

where C, and C, are constants of integration and are determined by the boundary conditions of the system.
The boundary conditions are the vertical displacements at the locations of the corresponding cablesv; .
Boundary Condition 1: v,y =—y,.
Boundary Condition 2: v, _, =—y;.

X:

3
Ely, - Ely, - E

¢ = Vi ; ©)

C,=—Ely, . (10)

Repeating this method for the other parts leads to a system of linear equations. The solution to the
resulting system of linear equations gives the value of the axial force in each cable.
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ﬂ+5+a+a=§

6F,’ + F,I’ + 6Ely, —12Ely, + 6Ely, =0 (11)
12F, +6F, ' + F,’ + 6Ely, —12EIy, + 6Ely, = 0

29F,} +20F,’ +11F,’ +3F,[’ + 6Ely, —6Ely, =0

where F is the external force at the cable fault location and F' is the axial force in each cable. Only half of
the system is considered since it is symmetrical. The final set of equations for the eight-cable system is then
developed.

By defining parameter B as the system stiffness coefficient (B = 5713) and substituting the correspond-

. E . .
ing value y, =;‘ the above system of equations can be rewritten as follows:

ﬂ+g+@+a=§
Fy(6+6B)+F (1-12B)+ F, (6B)=0 (12)

F,(12)+ F (6+6B) + F, (1-12B) + F; (6B) =
F,(29)+ F (20)+ F, (11+6B)+ £ (3-6B) =0

In order to find a mathematical pattern in the final system of equations, the analytical method was
applied to evaluate several tiny systems. If such a mathematical model is found, then the final set of
equations for any given large system can be obtained by a simple procedure. In the following analytical
example, many systems with different numbers of cables can be used. The goal is to determine the final set
of equations for each system.

Eight-cable system:

F
BB+t Bt F=—

Fy(6+6B)+F,(1-12B)+ F;(6B)=0
Fy(12)+ F, (6+6) + F, (1-12B) + £ (6B) =0 (13)
Fi(18)+ F,(12)+ F(6+6B)+ F, (1-12B) + £ (6B) =

(38)

F;(38)+F,(29)+ Fy(20)+ F, (11+6B)+ F (3—6B)=0

16-cable system:

E+5+Q+ﬂ+@+&+ﬂ+&:§

Fy (6+6PB)+F; (1-12B)+ F; (6B) =0

Fy(12)+ F, (6-+ 6B) + F, (1-12B) + F; (6B) =

Fy(18)+ F, (12)-+ F, (6+6B)+ F5 (1-12B) + F, (68) =0 (14)
Fy (24)+ F, (18) + Fy (12) + Fy (6 6B) + £, (1-12) + F; (68) =0

Fy(30)+F, (24)+ F, (18)+ F5 (12)+ F, (6 + 6B) + F; (1-12B) + F, (6B) =0

Fy(36)+ F, (30)+ Fy (24)+ F5 (18) + F, (12) + F; (6 + 6B) + F, (1-12B) + F, (6B) =0

Fy(65)+F, (56)+ F, (47)+ F5 (38)+ F, (29)+ F; (20)+ F, (11+ 6B) + F{ (3—-6B) =0
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By comparing the systems of equations obtained for different structural systems, the mathematical
pattern is demonstrated. The equilibrium equation serves as the basis for the final system of equations, the
final equation represents the boundary condition at the location of the cable downtime, and the remaining
equations can be easily derived from the boundary conditions of other intact cables. The following system
of linear equations is created as a general representation of a structural system with an arbitrary number of
cables after the mathematical rule is established in the final system of equations:

F
R e L

F,(6+6B)+E,_ (1-12B)+ F,_, (68)=0
F,(12)+F,  (6+6B)+F,_,(1-12B)+ F,5(6B)=0

(18)+F,_ (12)+F,_, (6+6B)+F, ;(1-12B)+ F,_, (6B) =0 (15)
F,(24)+F,_ (18)+ F,_, (12)+ F,_; (6 + 6B) + F,_, (1-12B) + F,_s (6B) =0

F,(6n=12))+F,_ (6(n—1)—12)+--+ F(6+6B)+ F, (1-12B)+ F; (6B)=0

F,(9n-7)+F, (9(n 1)=7)+-+F,(11+6B)+ F (3-6p) =

It is worth emphasizing that since the system is symmetrical, all the calculations above only consider
half of the system.

Figure 2 shows the critical cable stress magnification factor, also called the relative force magnification,
for different systems.
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Figure 2. Stress magnification factor in the main cables for different systems
S ource: made by R.A. Ahmed, N.A. Yermoshin

The stress magnification factor in the main cable decreases as  increases, as shown in Figure 2. Next,
we take the resulting system of linear equations and determine the general solution. On the main cable F/,
the goal is to calculate the stress magnification factor as a function of p.

The system analysis method is used to gradually solve this system of equations. The basic method is
the same as in the previous step. The idea is to identify a mathematical pattern by solving a system of linear
equations for several small systems. If this pattern is found, it can be applied to any system. The stress
magnification factors in the critical cable, which depend on [, were calculated for many systems, and the
results are shown below.
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Eight-cable system:

F _ 173+3540B+6264p° + 216’ (16)
F 232+5976B+18288B +1728p°

10-cable system:

F _ 323+14100B+168021B° +649836p° +399168 3" + 5832
F 433+21237B+294408B% +1407996B° +1472256B* +58320B°

(17)

It is important to note that the stress magnification factor for any cable can be determined taking into
account the methodology used. However, in this case, only the stress magnification factor in the main cable
is significant.

The analytical and numerical results for the 10-cable system are compared using the SAP2000 software
package, confirming the accuracy of the analytical solution. The differences between the two solutions are
minimal due to the geometric simplicity of the model and the use of linear static analysis (Figure 3).
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Figure 3. Comparison of analytical and numerical solutions for a 10-cable system:
a—Pp=183;b—p=183
Source: made by R.A. Ahmed, N.A. Yermoshin

The previous equations (16 and 17) show the general form:

F_d+bB+cB+dB +- (18)
F " +bB+cB+dB +-

The objective is to find a mathematical method to determine the critical coefficient of increase in cable
stress for each specific system.

The relevant parameters (a, b, ¢, and d) are known. It was possible to reduce the total number of
unknown coefficients to four using this method. The value @ indicates the coefficient for the minimum
stress increase in a system with 2z cables, which occurs at f = c and is equal to 1/2n, while the coefficient
for the maximum stress increase is indicated by the parameter b, which occurs at B = 0. From equations 16
and 17, it can be concluded that for any system with 2n > 6, the maximum stress increase is determined at a

ratio % close to 0.75.
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Therefore, the general form of the approximation function will be:

3 1

+4 21 (19)
1+£Bj
C

The line that best fits the collected data is determined using linear regression. LSM, or theleast squares
method, was used in the study. A value is considered an estimate of the unknown parameters (parameters ¢
and d) if it minimizes the sum of squares between the exact and approximate values, in this case, function 7,
according to the LSM technique. Equations 26 and 27, which derive T equal to zero in terms of parameters
c and d, achieve this. The following equations show the calculation process applied to a data set with x-
match points (y; u f;):

H_1
F 2n

b—a

ﬂ:“W; (20)
A=v- =y~ a+1+b;;d : 1)
2 (o) (b—a)’ 2(b-a)(yi—a).

T
a (A?):_@_a)z(z@f o ®)o2(® Ln(gj}__z<b_a><yi_a>(gjd " .
BN CEE ) CHI

a(aAcf) _ (b—a)’(2d BZ”’;—”—‘ + Zj Bjc‘”’“) _2(b-a)(y —aid f)dc‘d_l ; (24)

[1+(E) +2[Ej ] £1+(Ej ]

reya, 2s)
g_gzo; (26)
g_f:o, 27)

where y; and f; are the actual and calculated values of stress magnification factor F for different values of f.

1
The previous equations were solved iteratively. For equation 26, multiple values of the parameter ¢ and
their associated parameter values are determined.
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The values of parameter ¢ are determined by equation 27 using the values of parameter d. A single set
of parameters ¢ and d can only fit both equations according to the systems under consideration. The
calculations of parameters ¢ and d for 10- and 20-cable systems are shown in Figure 4. The function
approximation parameters for the different systems are shown in Table 2 after splitting into a single table.
¢ and d for several systems are shown in Figure 5. When c is one, it means that ¢ is somewhat elevated. This

will be verified in the next section.
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Figure 4. Values of ¢ and d for systems with 10 and 20 cables calculated:

a — the calculation of coefficient d for Cable 20; b — the calculation of coefficient ¢ for Cable 20,
¢ — the calculation of coefficient d for Cable 10; d — the calculation of coefficient ¢ for Cable 10
Source: made by R.A. Ahmed, N.A. Yermoshin

Table 2

AHANUTVYECKME W YNCTEHHBIE METO[IbI PACYETA KOHCTPYKLIA

Calculated parameters of the approximation function — one failed cable
Cable number a b c d
4-cable system 0.250 0.69 0.666 1.000
6-cable system 0.167 0.75 0.700 0.710
8-cable system 0.125 0.75 0.840 0.620
10-cable system 0.100 0.75 0.920 0.580
12-cable system 0.083 0.75 0.948 0.540
14-cable system 0.071 0.75 0.962 0.510
16-cable system 0.063 0.75 0.972 0.490
18-cable system 0.056 0.75 0.980 0.475
20-cable system 0.050 0.75 0.985 0.460
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Figure 5. Parameters ¢ and d for several systems are shown:
a — the coefficient d for a number of cables 2n; b — the coefficient ¢ for a number of cables 2n
S ource: made by R.A. Ahmed, N.A. Yermoshin

The LSM method is used to obtain the equation for parameterd . For large systems, we only consider

systems with more than 12 cables to simplify the equation and improve its accuracy. The following
equation can be used to represent parameter d .

0.65

d =0.35+—11
2n )\’
1+()

2m=12. (28)

5

For large values of n, parameter d is 0.35 according to the above equation. There is no need to repeat
the mathematical calculations used in equations (20)—(27). Figure 6 shows how the values obtained by the
LSM method confirm the correctness of equation 28. It is obvious that the proposed equation has a
maximum error of less than 1% and can accurately describe the value of parameter d.
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Figure 6. Comparison of the calculation of parameter d by two methods
S ource: made by R.A. Ahmed, N.A. Yermoshin

Given the results mentioned earlier, the approximation function could be rewritten for the general
system as follows:
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3_ 1
A_L1,4 dngy(iztion). (29)
F 2n (B)
1+| B
¢
And for larger values ofn :
3
K 4
ISR S 30
F o 1+B ¢0)

where parameter d is to be calculated using equation 28.

Figure 7 shows the exact stress increase factor curves for each system, as well as the curves obtained
from the approximation function. It is evident that the curves of the approximation function accurately
describe the exact values of the stress increase factor. The approximation error is less than 5% even for
small values of f.

It is important to note that the maximum stress increase factor is greater than 0.50 with a value of 0.75.
The ratio of the variance in the model that is explained by the approximation function to the total variance is

called the R-squared parameter ( R?), which is sometimes called the coefficient of determination (Figure 7).
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Figure 7. Exact and approximate stress increase factors in various systems — single failed cable:
a — the stress increase ratios for cable 4; b — the stress increase ratios for cable 6;
¢ — the stress increase ratios for cable 18; d — the stress increase ratios for cable 20
S ource: made by R.A. Ahmed, N.A. Yermoshin
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The accuracy of the fitting function is assessed using the R-squared, a measure of statistical
significance. It indicates how well the regression method will fit the actual data points. For a perfect fit, the
R-squared is equal to one, while for a poor fit, it approaches zero. The R-squared for a data set with a
matched point x (y; and f;) is calculated as follows:

_ 1L
yE=2V (31)
X =1
S =Xy =7, (32)
i=1
SSres :Z(yi_f;‘)z s (33)
i=1
SS
R* =1 34
< (34)

where y;and f; are exact and approximate values, respectively. Table 3 provides a summary of R-squared

calculations for various systems.
Equation (34) is an approximation function for the critical cable stress increase factor after a single
cable failure.

Table 3
R-squared calculations for various systems

Cable number R-squared (R?) 2;1 Vi y SSot S8,
4-cable system 0.999 7.96 0419 | 0546 | 3.47E-
6-cable system 0.994 7.30 0.386 0.76 0.0059
8-cable system 0.989 6.95 0.39 0.817 0.015
10-cable system 0.990 6.83 0.361 0.861 0.013
12-cable system 0.995 6.30 0.35 0.799 0.009
14-cable system 0.996 6.72 0.355 0.908 0.0051
16-cable system 0.998 6.69 0.38 0.921 0.0049
18-cable system 0.998 6.65 0.352 0.929 0.0048
20-cable system 0.998 6.64 0.351 0.936 0.007

3. Results

In cable-stayed bridges, the likelihood of occurrence of progressive collapse triggered by cable loss
scenarios must be thoroughly investigated. The Post-Tensioning Institute (in united states) PTI (2007)
recommends considering the probable cable loss scenarios during the design phase. Static analysis and
application of a DAF of 2 is recommended to determine the effect of loss of cable.

There are two main approaches to preventing progressive collapse. First, ensure a high level of safety
against local failure by using structural or non-structural strategies. Second, prevent failure from spreading
by designing a robust structure that allows local failure. In the case of the failure of one of the parallel load-
bearing elements (cables), the load carried by the failed member must be redistributed to the remaining
structure. In this situation, the member adjacent to the failed member receives most of the redistributed load
and becomes the critical member. If this member cannot tolerate the redistributed load, the collapse will
progress to the subsequent members and, possibly, the entire structure.
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When constructing bridges, the possibility of failure of all cables within a 10m radius should be taken
into account. For example, if the distance between two adjacent cables is 5 < L < 10 m, the failure of both
lines should be taken into account. Therefore, the minimum design load of a cable includes its original load
plus the load redistributed from adjacent failed cables in a cable loss scenario and can be calculated
as follows:

(35)

2
Cable Design Load = F +2 F(O.lOSm +0.645m J .

1+ BO.SS

It can be seen that the design load of the cable depends on B. This means that for systems with larger
B values, smaller design loads are required. Equation 35 shows that the design loads for two systems with
f values of 50 and 500, assuming two cables fail are 1.69F and 1.35F respectively. This shows a difference
of 25%. Long-span cable-stayed bridges can be divided into zones based on B values (small, medium, and
large) for calculating the design loads. Thus, using the proposed method reduces the cable design costs in
the event of cable loss.

4. Conclusion

In modern bridges, the distance between two adjacent cables is much shorter than in old bridges.
Therefore, in the event of car accidents or explosions on new bridges, more than one cable is likely to rupture.
Accordingly, it was proposed to consider the rupture of all cables within 10 meters when designing bridges.

1. Several studies have been conducted to identify DAF in bridges. These studies show that a DAF
equal to two is not safe in all cases. While recent research proves that the proposed DAF is safe for cable
design, it is not safe for the design of pylons, as well as girders with negative moments.

2. A parallel load-bearing system, which is a long-span cable-stayed bridge, is considered and the “stress
magnification factor” of the critical cable in a cable loss scenario is investigated. The design parameters of
the system, such as the beam bending stiffness and the unique axial stiffness of each cable, are taken into
account.

3. Failure of multiple cables is also considered. An analytical approach based on the differential
equations of the system is applied and an approximation function is developed to calculate the stress
magnification factor of the main cable in the event of a cable break. The least squares method is used to
minimize the error of the approximation function.

The proposed approximation function is found to be accurate when compared with accurate values of
the stress magnification factor. The proposed approximation function has an error of less than 5% in all the
systems tested, except for minor values of B (system stiffness factor). Increasing the value of  reduces the
stress magnification factor in the main cable. The parameter  influences the calculation of the cable load.

This means that for systems with large B values, smaller design loads are required. Therefore, in the
case of long-span cable-stayed bridges, the bridge can be divided into different zones corresponding to
different  values. The minimum design load for each zone can then be determined.

As a result, the use of the proposed method can reduce the cable design costs in the event of cable loss.
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