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Abstract. When choosing the shape of a shell, one should strive for the boundary conditions to ensure momentless behavior 
of the shell. Second-order algebraic surfaces include three degenerate surfaces: parabolic, elliptic, and hyperbolic cylindrical 
surfaces, and two surfaces derived from them: circular cylindrical surface and cylindrical surface with incomplete ellipse in 
cross-section. These five surfaces are the objects of this research. For the first time, comparative static analysis of the five 
shells under a load of self-weight type is performed using the momentless shell theory. The explicit formulae for the 
determination of three internal membrane forces are obtained. It is shown that the parabolic cylindrical shell and the cylindrical 
shell with incomplete ellipse in cross-section perform better within the momentless shell theory. The constraints for the 
application of the momentless theory obtained earlier by other authors are confirmed. For the first time, a system of three 
partial differential equations with respect to the displacements of middle surfaces of the five cylindrical shells given in 
previously unused curvilinear coordinates is derived. It is established that no studies dealt with the calculation of hyberbolic 
cylindrical shells so far. A brief review of publications on the analysis of strength, stability, dynamics, and application of the 
five considered cylindrical shells is given to clarify the directions of investigation of these five cylindrical shells. 
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Аналитический расчет цилиндрических оболочек 
в форме алгебраических поверхностей второго порядка2 

С.Н. Кривошапко

Российский университет дружбы народов, Москва, Россия 
 sn_krivoshapko@mail.ru 

Поступила в редакцию: 30 июля 2024 г.  
Принята к публикации: 27 сентября 2024 г. 

Аннотация. При выборе формы оболочек нужно стремиться, чтобы граничные условия обеспечивали работу оболо-
чек в безмоментном состоянии. В состав алгебраических поверхностей второго порядка входят три вырожденные 
поверхности: параболическая, эллиптическая и гиперболическая цилиндрические поверхности, а также две произ-
водные от них поверхности: круговая цилиндрическая поверхность и цилиндрическая поверхность с неполным эл-
липсом в поперечном сечении. Эти пять цилиндрических поверхностей стали объектами исследования в статье. Впер-
вые произведен сравнительный расчет по безмоментной теории пяти оболочек на действие статической нагрузки 
типа собственного веса, для чего получены в явном виде формулы для определения трех тангенциальных внутренних 
усилий. Показано, что в рамках безмоментной теории оболочек лучше работает параболическая цилиндрическая обо-
лочка и цилиндрическая оболочка с неполным эллипсом в поперечном сечении. Подтверждены полученные ранее 
другими авторами ограничения на применение безмоментной теории. Впервые выведена система трех дифференци-
альных уравнений в частных производных относительно перемещений срединной поверхности пяти цилиндрических 
оболочек, заданных в ранее не применявшихся криволинейных координатах. Установлено, что до настоящего вре-
мени никто не занимался расчетом гиперболической цилиндрической оболочки. Приведен краткий обзор опублико-
ванных работ по расчету на прочность, устойчивость, колебания и применение пяти рассматриваемых цилиндриче-
ских оболочек для выяснения направлений исследований этих пяти цилиндрических оболочек. 
Ключевые слова: тонкая оболочка, гиперболическая цилиндрическая оболочка, параболическая цилиндрическая 
оболочка, круговая цилиндрическая оболочка, эллиптическая цилиндрическая оболочка, линейная теория оболочек 
в линиях кривизны, безмоментная теория оболочек 
Заявление о конфликте интересов. Автор заявляет об отсутствии конфликта интересов. 

Для цитирования: Krivoshapko S.N. Analytical calculation of cylindrical shells in the form of second-order algebraic 
surfaces // Строительная механика инженерных конструкций и сооружений. 2024. Т. 20. № 6. С. 567–592. http://doi.org/ 
10.22363/1815-5235-2024-20-6-567-592 

1. Introduction

Various analytical, semi-analytical and numerical methods for the calculation of thin- and thick-walled, 
single- and multi-layer shells made of physically linear and nonlinear structural materials have been developed 
in response to the demands of practice. To assist the design engineer, the corresponding computational soft-
ware systems have been created. Various optimality criteria have been developed for the design of thin shells. 

A number of review papers [1–4] show that shells of rotation, translation, cylindrical and conical shells 
are among the most popular thin and thick shells that can satisfy a variety of practical and scientific demands 
arising in different time periods. 

The greatest attention has been given to shells of rotation. Twenty three optimality criteria were 
proposed for them [5]. V.V. Novozhilov et al. [6] showed that, in terms of stress magnitude, a parabolic dome 
is the most efficient, but it requires the largest area of the supporting ring and is the least efficient from this 
standpoint. In [7], the stress-strain state of the rotation shells with holes in the apex and the same overall 
dimensions, but different meridians, was compared. Comparative calculations of domes were performed to 
determine the strength parameters under external static [6], dynamic and explosive [8] loads. The choice of 
an optimal velaroidal shell on a rhombic flat base, the middle surface of which is formed by the motion of 
different plane curves with variable curvature, was studied in [9]. 
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However, such comparative calculations have not been performed for hyperbolic, parabolic, elliptic and 
circular cylindrical roofs, although architects have tried to expand the list of surfaces of zero Gaussian 
curvature on a rectangular base by including developable surfaces [10]. 

Materials for analytical calculation of cylindrical shells defined by algebraic surfaces are considered 
primarily in this paper. At present time, virtually all problems of structural mechanics are solved using 
numerical methods. But there is another standpoint, such as that of the authors of monograph [6]: “In a 
reasonable combination of analytical and numerical methods with an understanding of the mechanical side of 
the problem under consideration”. 

Purpose of the study. To determine the strength parameters of two elliptic, circular, hyperbolic and 
parabolic cylindrical thin shells, having the same span and height, constant thickness, physical and mechanical 
characteristics of the structural material and subjected to the same static external load using the analytical 
calculation technique of the momentless shell theory. 

By comparing the obtained approximate calculation results, conclusions need to be drawn regarding the 
choice of an optimal cylindrical shell in the form of a second-order algebraic surface and regarding the 
applicability of the momentless shell theory to the calculation of the considered shells. 

It is also necessary to determine the position of the shells in the form of second-order cylindrical surfaces 
in the modern construction practice and in the solution of new problems, arising in the design of these shells 
for various needs of society. 

2. Explicit and Parametric Equations of Second-Order Algebraic
Cylindrical Surfaces and Their Coefficients of Fundamental Quadratic Forms 

Second-order algebraic surfaces include 3 degenerate surfaces: parabolic (Figure 1), elliptic (Figure 2) 
and hyperbolic cylindrical surfaces. These three surfaces are well known to geometers, architects [11], and 
engineers. Based on these surfaces, two more surfaces can be derived: circular cylindrical surface (Figure 3) 
and cylindrical surface with incomplete ellipse in cross-section (Figure 4). 
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Figure 1. Parabolic cylindrical shell 
S o u r c e: made by S.N. Krivoshapko 
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Figure 2. Semielliptic cylindrical shell 
S o u r c e: made by S.N. Krivoshapko 
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Figure 3. Circular cylindrical shell 
S o u r c e: made by S.N. Krivoshapko 
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Figure 4. Elliptic cylindrical shell 
S o u r c e: made by S.N. Krivoshapko 
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2.1. Parabolic Cylindrical Thin Shell 

The canonical explicit equation of parabolic cylindrical surface (see Figure 1): 

( )
2

2
1 , .

x
y y x h z z

a

 
= = − =  

 
 

The parametric equations of this surface may be expressed as 

( ) ( ) ( ) ( )2, 1 – ,  ,x x u au y y u h u z z v lv= = = = = =
 

where u, v are the dimensionless independent parameters, 1 1, 0 1.u v− ≤ ≤ ≤ ≤  

Then, the coefficients of the first (A, F, B) and the second (L, M, N) quadratic forms of the surface will 
be the following: 

2 2 2 24 , 0, , 2 / ,  0,  0,A a h u F B l L ah A M N= + = = = = =  

and the radius of curvature of coordinate line u will be 

2 3
1 / 2( )/ .R A L A ah= =  

Hence, hereinafter, a coordinate grid in the lines of curvature is used, with coordinate line u coinciding 
with the directing parabola of the cylinder, and coordinate lines v coinciding with the rectilinear generators 
of the cylinder ( )2 .vR R= = ∞  

2.2. Elliptic Cylindrical Thin Shell 

The canonical explicit equation of elliptic cylindrical surface: 

2 2

2 2
1,  ,

x y
z z

a h
+ = =  

where a, h are the lengths of the semi-axes of the ellipse. 

2.2.1. Cylindrical Thin Shell With Semi-Ellipse in Cross-Section (Figure 2) 

The parametric equations of this surface can be represented as 

( ) ( ) ( ) ( )1/22 , 1 – ,  ,x x u au y y u h u z z v lv= = = = = =  

where u, v are the dimensionless independent parameters, 1 1, 0 1.u v− ≤ ≤ ≤ ≤  

The coefficients of the first (A, F, B) and the second (L, M, N) quadratic forms of the surface will be 

( ) ( )3/22 2 2 2 2 2/ 1 – , 0, , / 1 – , 0, 0,A a h u u F B l L ah A u M N= + = = = =  
=   

and the radius of curvature of coordinate line u will be 

2 3 2 3/ 2
1 / 1 – / .( ) ( )R A L A u ah= =  
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2.2.2. Cylindrical Thin Shell with Incomplete Ellipse in Cross-Section 

The canonical explicit equation of the considered cylindrical surface (see Figure 4): 

2
2 2

2 2
11 1

1 1, .
x y a

z z
ha a

 
 + + − = =
 
 

 

In the considered case it is necessary to set the length of the semi-axis of the full ellipse a1 ≥ a, and then 
to determine the length of the other semi-axis of the full ellipse h1: 

1 2

2
1

.

1 1

h
h

a

a

=

− −

 

The parametric equations of the considered cylindrical surface can be represented in the following form: 

( ) ( ), ,x x u au z z v lv= = = =

( )
2 2

2
1 2 2

1 1

1 1 .
a a

y y u h u
a a

 
 = = − − −
 
 

The coefficients of the first (A, F, B) and the second (L, M, N) quadratic forms of the surface will be 

2 4 2
2 2 1

2
4 2
1 2

1

,  0,  ,

1

h a u
A a F B l

a
a u

a

= + = =
 

− 
 

 

( )3/23 2 2 2
1 1 1/ – ,  0,   0,L a h a A a a u M N= = 


=

and the radius of curvature of coordinate line u will be 

3/23 2 2
1 2

1 3 2
1 1

.1u

A a a
R R u

a h a

 
 = = −
 
 

 

2.2.3. Circular Cylindrical Thin Shell (See Figure 3) 

The formulas obtained in section 2.2.2 may be used for the circular cylindrical shell, but one must set 
a1 = R, h1 = R, then 

( )22 2 22 2
2 2

2
 ,

2 4

h aa h
x y R

h h

+ −+ + = =  
 

 

( ) ( ), ,x x u au z z v lv= = = =

( )
2 2

2 2 2 .
2

a h
y y u R a u

h

−= = − −  
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The coefficients of the first (A, F, B) and the second (L, M, N) quadratic forms of the surface will be 

( )
2 2

2
2 2 2

,  0,  ,
a R

A F B l
R a u

= = =
−

 

( )
3 2 2

3/2 2 2 22 2 2
,     0,   0,

a R a R
L M N

R a uA R a u
= = = =

−−
 

and the radius of curvature of coordinate line u will be 

2 2

1 .
2u

a h
R R R

h

+= = =  

The radius of curvature of coordinate line v will be Rv = R2 = ∞. 

2.3. Hyperbolic Cylindrical Thin Shell 

The implicit equation of one branch of a hyperbolic cylindrical surface can be written in the following 
form (Figure 5): 

2 2

2 2
1,

y x

c b
− =  

where for a single considered branch 

( )
2 2

2 .
2

a c
b

h c h
=

+
 

In this case, the explicit equation of the hyperbolic cylindrical 
surface defined in the xOy axes is written as 

1/22 2 2( /)– · 2 ,y h c c x h c h a = + + +   

taking into account the introduced geometric notation shown in Figure 5. 
The parametric equations of the considered cylindrical surface 

can be represented in the following form: 

x = x(u) = au, 

z = z(v) = lv, 

( )2 2 2 .y c h c hu c h= + − + +  

The coefficients of the first (A, F, B) and the second (L, M, N) quadratic forms of the surface will be 

( )
( )

22 2
2 2

2 2

2
,  0,  ,

2

h c h u
A a F B l

c hu c h

+
= + = =

+ +
 

( )
( )

2

3/22 2

2
,  0,  0.

2

ahc c h
L M N

A c hu c h

+
= = =

 + + 

 

The radii of curvature of coordinate lines u and v are R1 = A2/L, Rv = R2 = ∞. 

 

Figure 5. One branch of the hyperbolic 
cylindrical shell 

S o u r c e: made by S.N. Krivoshapko 
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3. Three Groups of Governing Equations of Linear Theory
of Thin Shells in Lines of Principle Curvatures 

Taking into account that the coefficients of the first fundamental form for cylindrical surfaces are B = l, 
A = A(u), then 

2/ / 0,  / 0, ,vдB дu дB дv дA дv R R= = = = = ∞  

and therefore the equations of the general linear theory of thin shells will be simplified in some way. 

Equilibrium equations: 

0,u u

u

N QS
l A Al AlX

u v R

∂ ∂+ − + =
∂ ∂

 

0,vNS
A AlY

u v

∂∂ + + =
∂ ∂

0,u u v

u

N Q Q
Al l A AlZ

R u v

∂ ∂
+ + − =

∂ ∂

0,v
v

MH
l A AlQ

u v

∂∂ − − =
∂ ∂

0,u
u

M H
l A AlQ

u v

∂ ∂− + =
∂ ∂

    (1)

where the positive directions of bending and twisting moments, internal normal and shear forces, external 
surface load are shown in Figure 6. 

Figure 6. Positive directions of forces (a) and moments (b)  
S o u r c e: made by S.N. Krivoshapko 
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Constitutive equations: 

( ) ( ) ( ), ,  1 – /2u u v v v u uvN C N C S C= ε + νε = ε + νε = ν ε , 

( ) ( )– – , – 1 –, ( ) ,u u v v v u uvM D M D H D= κ + νκ = κ + νκ = ν κ   (2) 

where ( ) ( )2 3 2 ,/ 1 – , / 12 / 1 –С Eh D Eh= ν = ν 
  h is the shell thickness, ν is the Poisson’s ratio, E is the 

modulus of elasticity of the shell material. εu, εv, εuv, κu, κv, κuv are the components of the membrane and 
flexural strains. The contradictions introduced by formulas (2) into the shell theory were first pointed out by 
V.Z. Vlasov. However, in the opinion of V.V. Novozhilov, all these contradictions do not exceed the errors 
introduced into the shell theory by the initial assumptions of the thin shell theory. 

Geometrical equations: 

1 1 1 1
,  , ,  u v v uz

u v uv
u

u u u uu

A u R l v A u l v

∂ ∂ ∂ ∂ε = − ε = ε = +
∂ ∂ ∂ ∂

 

2

2 2

1 1 1 1 2
κ ,,  κ ,  2κu uz z z

u v uv
u u

u uu u u

A u A u R l v A u Rl v

   ∂ ∂ ∂∂ ∂= + = = +   ∂ ∂ ∂ ∂∂   
  (3) 

where uu, uv, uz are the displacement components. 

4. Determination of Internal Forces of Thin Cylindrical Shells in the Form 
of Second-Order Algebraic Surfaces Using Momentless Shell Theory 

In this section, the linear theory of thin rigid shells will be considered in the approximate momentless 
setting, when it is assumed that internal bending and twisting moments, and hence shear forces, can be 
neglected. The assumption of uniform stress distribution over the thickness of the shell led to the emergence 
of the momentless theory of rigid shells. Those who are interested in the momentless thin shells that only 
accept tensile internal forces and change their shape under external forces can explore the materials of review 
article [12] with 80 sources used. 

Assuming that a rigid shell satisfies the requirements of momentless state, then the first three general 
equations of equilibrium (1) of the shell can be used excluding the shear forces: 

,0uN S
l A AlX

u v

∂ ∂+ + =
∂ ∂

 

0,vNS
l A AlY

u v

∂∂ + + =
∂ ∂

 

0,u

u

N
Z

R
− =  

from which it follows that 

,u uN ZR=  

( ) ( )1 1
1 1

, u uN N
S l X dv f u lv X f u

A u A u

∂ ∂   = − + + =− + +   ∂ ∂   
  

( )2 .v
l S

N dv lYv f u
A u

∂= −  − +
∂

  (4) 
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Thus, the problem of determining the internal normal and shear forces by the approximate momentless 
shell theory is a statically determinate problem for all shells in the form of second-order cylindrical surfaces. 

Arbitrary functions of integration f1(u), f2(u) and df1(u)/du are determined by satisfying boundary 
conditions according to the momentless shell theory. 

In further calculations of all five cylindrical shells defined by second-order algebraic surfaces, it is 
assumed that a = 5 m, h = 4 m, and the external surface load components X, Y, Z are 

( )
( )

1
2 2

tgφ
inφ , ,     0

1 tg φ

X X u qs q Y= = = =
+

 

( )
( )

1
2 2

1
c ,osφ

1 tg φ

Z Z u q q= = − = −
+

 

where q is the distributed load of self-weight kind, φ is the 
angle between the tangent to coordinate line u and the fixed 
Ox axis (Figure 7). 

It is assumed that the hinges are connected to an 
absolutely rigid in-plane and flexible out-of-plane support at the ends v = 0, v = 1. For open cylindrical shells 
it is impossible to satisfy the boundary conditions on the straight edges of the contour. 

Then, formulas (4) give 

( )
2 2

1
2

1
,

2
u

v
dN dfl v d l

N X v C f u
A du A du A du

 = + − + + 
 

 

from where С = 0, f2 (u) = 0, since Nv = 0 at v = 0. Then, from the boundary condition of Nv = 0 at v = 1, 
the following is obtained: 

( )1 1
, 

2
udf u dNl d

X
du du A du

 = + 
 

 

from where 

( )1
1

.
2

udNl
f u X

A du
 = + 
 

 

By substituting the obtained expressions for f1(u), df1/du and f2 (u) into formulas (4), the final formulas 
for calculating the internal membrane forces under the considered boundary conditions are written: 

,u uN ZR=  

( )1
,1 2

2
udNl

S X v
A du

 = + − 
 

 

( )
2 1

1 .
2

u
v

dNl v d
N X v

A du A du
 = − + − 
 

 (5)

Figure 7. Geometrical parameters, external loading,
and hinge supports of the considered shells 

S o u r c e: made by S.N. Krivoshapko 
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4.1. Parabolic Cylindrical Thin Shell 

The following was obtained previously for the cylindrical parabolic surface: 

A2 = a2 + 4h2u2, R1 = Ru = A3/(2ah). 

In the previous section, the formuals for calculating sinφ, cosφ were presented, thus 

2
,  0,  .

hu qa
X q Y Z

A A
= = = −  

According to formulas (4): 

( )2 2 24
,

2u

q a h u
N

h

+
= −  

( )12 2 2

2
,

4

lqhvu
S f u

a h u
= +

+
 

( )
( )

2 2
2 1

22 2 2 22 2 2
.

44
v

dfl qha vl
N v f u

dua h ua h u

−= − +
++

 

The boundary condition of Nv = 0 at v = 0 gives f2(u) = 0. The boundary condition of Nv = 0 on the 
opposite end of the shell v = 1 gives 

( )

( )
1 2

3
2 2 2 2

1
,

4

df u
lqha

du
a h u

= −
+

 

from where 

( )1 2 2 2
,

4

u
f u lqh C

a h u
= − +

+
 

where С = 0 when S(u = 0) = 0. Finally, for the parabolic cylindrical shell: 

( )2 2 24
,

2u

q a h u
N

h

+
= −  

( )
2 2 2

2 1
,

4

lqhu v
S

a h u

−
=

+
 

( )
( )
2 2

22 2 2

1
.

4
v

l qha v v
N

a h u

−
=

+
 

4.2. Elliptic Cylindrical Thin Shell 

4.2.1. Cylindrical Thin Shell with Semi-Ellipse in Cross-Section 

All geometric parameters of the elliptic cylindrical middle surface with a semi-ellipse in the cross-
section (see Figure 2) are given in Section 2.2.1. In addition to this 

2
,   0,  .

1

uh a
X q Y Z q

AA u
= = = −

−
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According to formulas (5): 

( )
3

2 2 21 ,u
q

N A u
h

= − −  

( )
( )

( ) ( )
2 2

24 2 2 2 2 2 2 4 2 2
2

2 2 2 2

1 1
3 9 6 .

2
v

ql v v u
N a a u a h a h u a h

h a u a h

− −  = − − − + −   − − 

 

4.2.2. Cylindrical Thin Shell with Incomplete Ellipse in Cross-Section 

All geometrical parameters of the elliptic cylindrical middle surface with an ellipse fragment in the 
crosssection (Figure 4) are given in Section 2.2.2. In addition to this 

( ) ( )
2

1

2 2 2 2 2 2 2 2
1 1

1 ββ
, 0, ,

β β β β

a uuh
X q Y Z q

a u h a a u h a

−
= = = −

+ − + −
 

( ) ( )
2 2 2 2 2 3 3/21 2

22
11

β β
, β , 1 β .

β1 β
u

a u h a a A
A R u

h aau

+ −
= = = −

−
 

According to formulas (5): 

( ) ( )
3

2 2 2
2 2 2 2 2

1
1 1

1 β
1 β β β ,

β βu

qA u q
N u a u h a

h h

−
 = − = − − + −   

( ) ( )2 2 2
12

1

1 2
3 1 β β

2 1 β

lqu v
S A u h

h A u

−  = − − = −
 

( )
( )

( ){ }2 2 2 2 2
1 1

2 2 2 2
1 1

1 2
3 β β β ,

2 β β

lqu v
a u h a h

h a u h a

−  = + − − + −
 

( ) ( )
( ) ( )

2 2 2 22 2 21 1
3/22 2 2 2 2 2 2 21 1 1

3 2β β1
.

2 β β β β
v

a u h aql v v a h
N

h A a u h a a u h a

  + −− β  = − 
  + − + −  

 

The obtained formulas allow to the calculate the elliptic cylindrical shell with a semi-ellipse in the cross-
section (see Figure 2). For this purpose, in the formulas of Section 4.2.2, it is necessary to take 

β = 1, a1 = a, h1 = h. 

4.2.3. Circular Cylindrical Thin Shell 

In this case, it is necessary to take R = 5.125 m, 

2 2 2 2 2

2 2
tgφ  , sinφ ,   cosφ .

dy x x au R x R a u

dx R R R RR x

− −= = = = = =
−
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According to formulas (4): 

2 2 2 ,uN q R a u= − −  

( )12 ,
laq

S uv f u
R

= − +  

( )
2 2 2 2

1
2 .v

dfl R a u lqv v
N f u

R R a du

 −= − +  
 

 

The boundary condition of Nv = 0 at v = 0 gives f2(u) = 0. The boundary condition of Nv = 0 on the other 
end of the shell v = 1 gives df1/du = alq/R, and f1(u) = alqu/(R) + C. 

Let S = 0 at u = 0, then С = 0. Substituting the obtained results into the equations for determining the 
internal forces according to the momentless theory allows to write the following: 

2 2 2  cosφ,uN q R a u qR= − − = −  

( )1 2 ,
laq

S u v
R

= −  

( )
2 2 2

2
2

1 .v
R a u

N l q v v
R

−= −  

For the calculation of long circular cylindrical shells, it is advisable not to use the momentless theory. 
When using the momentless theory, it is necessary to fulfill the following relation [18; 12]: 

.
l R

R h
  

4.3. Hyperbolic Cylindrical Thin Shell 

All geometrical parameters of the hyperbolic cylindrical middle surface (see Figure 5) are given in 
Section 2.3. It is necessary to take into account that 

( ) ( )
2 2

2 2 2 2 2 2 2 2

γγ
,  0,  ,

γ γ γ γ

a c huhu
X q Y Z q

a c hu a h a c hu a h

+
= = = −

+ + + +
 

( ) ( )3/22 2 2 2 3 2 2

22 2

γ γ γ
,  γ 2 ,  ,

γγ
u

a c hu a h A c hu
A c h R

ah cc hu

+ + +
= = + =

+
 

where с > 0 is an arbitrary number; 0 < cosφ ≤ 1, i.e. 0о ≤ φ < 90о. 
According to formulas (5): 

( )
2 2

2 2 2 2
2

γ
γ γ ,u

q c huqaA
N a c hu a h

L h c

+  = − = − + + γ
 

( )
( )

( )
2 2 2 2 2

2 2 2 2 2

3
1 2 ,

2 γ γ

a c hu a h c hluq
S v

c a c hu a h

 + γ + γ + γ = − −
+ +
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( )
( )

( ) ( )
2 2 2

2 4 2 2 2 2 2
2

2 2 2 2 2

1 γ
3 γ 9γ γ

2
v

l v v c hu
N q a c a h ha c u a h

c a c hu a h

− + = + + + + + γ + γ 

 

2 2 4 2 26 ( γ ) .h u a h + γ +   

5. Comparison of Results of Momentless Analysis 
of Five Cylindrical Thin Shells in the Cross-Sections of the Shells 
(in the Longitudinally Middle Section of the Shells, i.e. at v = 0.5) 

As noted earlier, all shells are assumed to have the same overall dimensions, i.e. h = 4 m, a = 5 m, 
l = 20 m. In this case, the formulas for calculating the internal membrane forces per unit length of the 
coordinate line take the following form: 

  parabolic cylindrical thin shell: 

( ) ( ) ( )
( )

2
22 2

10 2 1 9.77 1
8 0.39 ,  , ;

0.39 0.39
u v

uq v v v
N q u S N q

u u

− −
= − + = =

+ +
 

  cylindrical thin shell with semi-ellipse in cross-section: 

( )2 22.25 2.78 1 ,  uN q u u= − − −  

( )
2

2

49.2 22.5
1 2 ,

2.78

u
S qu v

u

−= −
−  

( )
( )

( )
2

4 2
22

1 1
300 1250 910 ;

2.78
v

qv v u
N u u

u

− −
= − +

−
 

  cylindrical thin shell with incomplete ellipse in cross-section (a1 = 5.98 m, h1 = 8.84 m, β = 0.7): 

( )2 24.04 3.36 1 0.7 ,  uN q u u= − + −  

( ) ( )2

2

14.1 1 2
 0.37 ,

1 0.83

qu v
S u

u

−
= +

+
 

( )
( )

( )
2

2 4
22

18.35 1 1 0.7
1 9.22 5.1 ;

1 0.83
v

v v u
N q u u

u

− −
= + +

+
 

  circular cylindrical thin shell (R = 5.125 m): 

2 225 cosφ,  

 
uN q R u qR= − − = −  

( )1000 1 2
,

qu v
S

R

−
=  

( ) 2 2 2400 1 25 / ;vN qv v R u R= − −  
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  hyperbolic cylindrical thin shell (c = 2 m, γ = 8 m, b = 0.88 m; 0.68 ≤ cos φ ≤ 1, i.e. 0о ≤ φ ≤ 47о): 

2 21.56 1 8 1 18.24 ,   uN q u u = − + +   

( ) ( )2

2

107 1 0.17
1 2 ,

1 18.24

u
S qu v

u

+
= − −

+  

( )
( )( )

2
2 4

22

107 1 8
1 1 38.36 466 .

1 18.24
v

q u
N v v u u

u

+= − + +
+

 

The values of shear and normal forces per unit length of coordinate lines u and v in the z = l/2 section 
of cylindrical shells are presented in Tabl. 

 
Momentless analysis results 

v = 0.5 (z = l/2 = 10 m section) 

No. Shell type Force/q u = 0 u = ± 0.4 
u = ±1 

(support along 
the length of the shell)

1. Parabolic cylindrical thin shell 
Nu/q 
S/q 
Nv/q

–3.12 
0 

16.05

–4.4 
0 

8.07 

–11.12 
0 

1.27

2. Cylindrical thin shell with semi-ellipse in cross-section 
Nu/q 
S/q 
Nv/q

–6.25 
0 

–29.4

–5.42 
0 

–24.05 

0 
0 
0

3. Cylindrical thin shell with incomplete ellipse in cross-section 
Nu/q 
S/q 
Nv/q

–4.04 
0 

–4.59

–4.3 
0 

–8.8 

–4.05 
0 

–11.6

4. Circular cylindrical thin shell 
Nu/q 
S/q 
Nv/q

–5.125 
0 

–19,51

–4.72 
0 

–18 

–1.13 
0 

–4.28

5. Hyperbolic cylindrical thin shell 
Nu/q 
S/q 
Nv/q

–1.56 
0 

26.75

–9.23 
0 

50.14 

–90 
0 

109

S o u r c e: made by S.N. Krivoshapko 

 
Using the momentless theory, normal forces Nu in a hyperbolic cylindrical shell are determined by the 

first formula (5): 

Nu = ZRu = –qcosφ Ru, 

where the radius of curvature Ru = 1.56 m at u = 0, but Ru = 131.8 m on the contour u = ±1, therefore this 
normal force takes on a larger value Nu = –90q. The momenless theory does not allow to specify a boundary 
condition on these edges. Taking into account that at the apex u = 0, φ = 0o, cosφ = 1, this results in Nu/q = Ru, 
i.e. the values in the u = 0 column of Table in the first row for Nu show the radius of curvature of a coordinate 
line Ru in its apex. 

All the above formulas in Sections 4 and 5 should be used with caution. Biderman V.L. [14] found that 
for open circular cylindrical shells, the momentless theory can be used in exceptional cases if the membrane 
boundary conditions on longitudinal edges are automatically satisfied. The scope of application of the 
momentless theory is limited to short shells with respect to shell radius R (see Section 4.2.3). Apparently, for 
non-circular cylindrical shells, the applicability of the momentless theory, by analogy with circular shells, can 
be limited by the relation: 

.  
l a

a h
  
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Although in some cases the formulas for the momentless theory provide acceptable results, and the 
possibilty of their application needs to be confirmed by more accurate calculation methods. In many cases, it 
is possible to incorporate the solutions of the momentless theory equations into the approximate solution of 
the general equations by splitting the latter into the momentless stress state equations and the edge effect. 

In  monograph [6], a similar analysis is performed on four cylindrical roof shells under dead load 
according to the momentless theory and it is concluded that the most optimal shell is the cylindrical shell with 
an incomplete ellipse in the cross-section, since this shell transfers a relatively small normal load to the 
supporting beams. 

6. The System of Design Equations of the General Theory 
of Thin Cylindrical Shells in Terms of Displacements 

Five equations of equilibrium (1), six constitutive equations (2) and six geometric equations (3) were 
derived for the calculation of thin elastic cylindrical shells using the general linear theory. 

Substituting the geometric equations (3) into the constitutive equations (2), the following is obtained: 

1 u vz
u

u

u uu
N C

A u R l v

 ∂ ∂ν= − + ∂ ∂ 
; 

1 v uz
v

u

u uu
N C

l v R A u

 ∂ ∂ν= − ν + ∂ ∂ 
; 

1 1 1

2
v uu u

S C
A u l v

∂ ∂− ν  = + ∂ ∂ 
; 

2

2 2

1 1 uz z
u

u

uu u
M D

A u A u R l v

  ∂ ∂∂ ν= − + +  ∂ ∂ ∂   
; 

2

2 2

1 ν 1 uz z
v

u

uu u
M D

A u A u Rl v

  ∂ ∂∂= − + +  ∂ ∂∂   
; 

( )1 1
1

2
uz

u

uu
H D

l v A u R

 ∂∂= − − ν + ∂ ∂ 
.  (6) 

The values of the shear forces are determined from the last two equilibrium equations (1): 

1 1
,    . u v

u v
M MH l H A

Q Q
l v A u A u l v

∂ ∂∂ ∂   = − = −   ∂ ∂ ∂ ∂   
 (7) 

From the last three equations (6) and equations (7), it can be seen that internal moments Mu, Mv, H and 
shear forces Qu and Qv do not depend on displacement uv. 

Substituting the expressions for internal forces and moments into the first three equilibrium equations 
(1) results in a system of three partial differential equations in terms of displacements of the middle surface 
of the eighth order, which are usually written in a reduced form: 

2 2 3
11 12 13 0u v zL u L u L U AlX+ + + = , 
2 2 1
21 22 23 0u v zL u L u L U AlY+ + + = , 
3 1 4
31 32 33u v zL u L u L U AlZ+ + − , 

where ܮ௜௝௞ … are differential operators, the upper index of which shows the maximum order of the 
corresponding partial derivative. In a more extended form these three equations can be expressed as 
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( )1 ν
ν

2
u v v uz

u

u u u uul A
l

u A u v R v u l v

− ∂ ∂ ∂ ∂∂ ∂  + − + + +   ∂ ∂ ∂ ∂ ∂ ∂  
 

( ) ( )32

2

1 2ν 1 ν A 1 1
0,

12 2
u uz z

u u u

u uu uh Al
l X

R l l R u A u A u R Cu v

  − −  ∂ ∂∂ ∂ + + − + + =   ∂ ∂ ∂∂ ∂      
 

2

12
νu v z

uu

u u uA l
l

A u v Rh R

 ∂ ∂
+ − + ∂ ∂ 

 

( )3 2

2 2

1 ν1 1 ν 2u uz z z

u u

u uu u ul

u A u A u A u R lA l A u Ru v v

   −   ∂ ∂ ∂∂ ∂ ∂ ∂ + + + − + +     ∂ ∂ ∂ ∂ ∂∂ ∂ ∂        
 

22

2 2 2

1 1
ν 0,uz z

u

uu uA Al
Z

l u A u R Dv l v

  ∂ ∂∂ ∂+ + + − =  ∂ ∂∂ ∂   
 

( ) ( )1 ν 1 ν1
νA 0

2 2
v v u z

u

l u u u uA Al
Y

u A u v l v u R C

−  + ∂ ∂ ∂∂ ∂ + + − + =  ∂ ∂ ∂ ∂ ∂   
.    (8) 

Thus, the equilibrium equations (1) of cylindrical shells are expressed in terms of displacements uu, uv, 
uz of the middle surface. The system of three partial differential equations (8) with variable coefficients is 
obtained. The system is of the eighth order. The use of geometric equations (3) guarantees the satisfaction of 
the strain compatibility conditions in the mid-layer of the shell. 

The system of three differential equations in displacements for developable shells, i.e., for shells of zero 
Gaussian curvature defined in a non-orthogonal conjugate coordinate system, is given in monograph [15], but 
for the case of zero Poisson's ratio (ν = 0). Taking ν = 0 and the average coefficient of the first quadratic form 
F = 0, equations (8) can be reduced to the form presented in monograph [15]. 

In general form, equations (8) will probably never be applied to the calculation of cylindrical shells 
defined in lines of curvature. These equations are derived here only to illustrate the displacement method for 
cylindrical shells in the form of analytic surfaces. Their application to circular cylindrical shells, the geometry 
of which is described in Section 2.2.3, will be shown only in Section 7. 

7. Existing Approaches to the Calculation of Thin Elastic Cylindrical Shells 
Using Analytical Methods During the “Golden Age of Shells” 

It is commonly believed that the “Golden age of shells” fell on 1924–1970s. It was at this time that 
reliable analytical methods for the calculation of thin elastic shells emerged, which are related to the requests 
of the construction practice for shell design and making it possible to describe the behavior of shells under 
external static loads more or less accurately. 

In addition to specific theories of cylindrical shells (V.Z. Vlasov, L. Donnel, A.A. Umansky, H.M. Mushtari, 
S.M. Feinberg), V.V. Novozhilov [16], at that time, proposed a complex resulting equation that includes all 
specific theories of cylindrical shells, including those strenghthened by stiffeners. 

7.1. Circular Cylindrical Thin Shell 

The largest number of analytical methods for the calculation of thin cylindrical shells based on the 
general linear theory of elastic shells has been proposed for circular cylindrical shells. The equations and 
formulas of the theory of circular cylindrical shells are mainly written in terms of z and s or ξ = z/R and 
θ = s/R, where s is the distance along the middle surface from the initial position to the corresponding point. 
As a result, A = B = 1 in equations (1) – (3), and Ru = R = const. 
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V.Z. Vlasov [17] introduced function Ф(ξ,θ), through which displacements uu, uv, uz are expressed. This 
allowed to turn the first two equations of equilibrium (1) into identities, and the third equation of equilibrium 
took the form of a partial differential equation with respect to the introduced function Ф(ξ,θ). This function 
was expressed as a double trigonometric sine series, which corresponds to a shell with hinged supports along 
the contour. The extension of the solution to shells with other boundary conditions is possible, but requires 
cumbersome calculations [18]. 

In the calculation of open circular shells of length l, the load and displacements were decomposed into 
Fourier series with period l: 

( ) ( )
0 1

π π
cos ;   sin ;v vn u un

n n

n z n z
u u s u u s

l l

∞ ∞

= =
= =   

( )
1

π
;z zn

n

n z
u u s sin

l

∞

=
=  

( ) ( )
0 1

π π
s cos ; sin ; m m m

m m

m z n z
Y Y X X s

l l

∞ ∞

= =
= =   

( )
1

π
sin ,m

m

n z
Z Z s

l

∞

=
=   

where the known decomposition coefficients Xm, Ym, Zm can be determined using the formulas given by 
V.Z. Vlasov [17]. Substituting these values into equations (8) for open circular cylindrical shells, three simple 
differential equations with respect to uun, uvn, uzn are obtained. In z = 0 и z = l planes, only the free support 
conditions will be satisfied, i.e., uu = uz = 0 and Nv = Mv = 0. 

For a closed circular cylindrical shell loaded with axisymmetric load, the solution can be represented as 
a single cosine series, which leads to an eighth order ordinary differential equation with respect to variable 
ξ = z/R. Its solution is sought in the form of the sum of hyper-geometric functions of ξ. 

Lurye A.I. [19] proposed the calculation of the optimal strenghthening of a circular hole in a circular 
cylindrical shell. 

In [20], solutions in the framework of technical and semi-integral shell theories using the method of 
separation of variables are demonstrated. The solution methods and simplifying assumptions for closed and 
open circular shells are different. In this work, it is noted that in many cases calculations for building shells 
give excessive accuracy from the practical standpoint, therefore it was possible to introduce a number of 
simplified versions of the shell theory, which allowed to solve a certain class of problems at that time. For 
example, V.Z. Vlasov [17] and his students introduced additional static and geometric hypotheses, and 
A.L. Goldenweiser [21] and V.V. Novozhilov [22] and their followers revealed conditions under which some 
terms of the design equations turn out to be insignificant. 

In the semi-momenltess theory of cylindrical shells, it is assumed that Mv = H = Qv = 0 and εu = εuv = 0, 
due to which the design equations of shells are simplified. The semi-momentless theory is discussed in more 
detail in [20; 23]. In [20] it is argued that one can introduce additional assumptions that do not have a 
noticeable effect on the behavior of closed cylindrical shells, in particular, one can assume that the Poisson’s 
ratio is zero (ν = 0) or one can discard relatively small values compared to a unit. W. Flügge [23] gave 
recommendations for the calculation of multi-wave reinforced concrete circular cylindrical shells with 
flexible or high sides. 

Different assumptions for the calculation of shallow and non-shallow short open shells and medium-
length and long shells were proposed. 

During this period, many researchers studied buckling of circular cylindrical shells with closed contour 
under compressive and shear loads applied at the ends [23] and under pure shear [23]. 
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The theory of multilayer shells also appeared at this time. The main directions in the development of 
the theory of multilayer shells were presented in 1972 by E.I. Grigolyuk and F.A. Kogan, as described in 
article [24]. In this article, the first works on the calculation of cylindrical shells are mentioned. 

7.2. Elliptic Cylindrical Thin Shell 

In [20], it is stated that cylindrical thin shells of non-circular cross-section were generally supported by 
flexible diaphragms at the transverse ends and the longitudinal edges were strenghthened with edge elements. 
The performance of such a system depends largely on the l/(2a) ratio. In long shells (l/(2a) > 4), the external 
load is taken up almost exclusively by the Nu, Nv, S forces. In medium-length shells (4 > l/(2a) > 1), in addition 
to these membrane forces, bending moment Mu is significant, while bending moment Mv and torque H play a 
minor role and may not even be taken into account. In short shells (l/(2a) < 1) the effect of bending moment 
Mu is relatively small, but the role of bending moment Mv increases. The mentioned features of shell behavior 
allow simplifying their calculation by replacing the actual structure with a simplified model. For example, 
short shells can be calculated as beams of length l. In contrast to circular cylindrical shells, the exact 
calculation of non-circular shells was extremely difficult in the mentioned period of time [20]. 

Most of the approximate methods were based on the idea of replacing the shell by prismatic folds. 
Basically, the methods differ from each other by the hypotheses about the degree of influence of certain 
internal forces, moments, or strains on the behavior of the considered shell. Studies on the use of computers 
for the calculation of the approximating folds began to appear [25]. 

7.3. Parabolic Cylindrical Thin Shell 

The contents of the first two paragraphs of the previous Section 7.2, which deals with elliptic cylindrical 
shells, are fully consistent with parabolic cylindrical shells as well. 

In the considered time interval, studies of multilayer shallow parabolic cylindrical shells, taking into 
account plastic deformations, have begun, e.g. [26]. 

7.4. Hyperbolic Cylindrical Thin Shell 

Hyperbolic cylindrical surface has been known for a long time, but only geometers have used it in their 
research. Not a single structure has been built. Not a single scientific article devoted to the strength analysis 
of a shell in the form of this surface has been found. 

7.5. Conclusion of Section 7 

E. Freyssinet, a French bridge engineer, designed and built the first parabolic cylindrical shell, which is 
technically a system of parabolic arches, to cover a 30-meter span of a factory in Monluson (France) in 1905. 
In Russia, long and short cast-in-situ cylindrical shells have been used in industrial buildings since 1928. 
For example, the first reinforced concrete cylindrical shell was erected under the direction of Prof. 
M.A. Novogorodsky over a water tank in Baku in 1925. After, cylindrical shells were used for the building 
of the Kharkov post office (1928), Moscow automobile depot (1929) and Rostov agricultural machinery plant 
(1931) [27]. A large number of circular and elliptic cylindrical shells made of reinforced concrete and brick 
constructed for the roofs of industrial buildings in 1930–1970 in Italy are presented in review article [28]. 
The advent of reinforced concrete and public demand for large-span structures for warehouses, hangars and 
public buildings led to the need of static calculation methods for these rigid shells. It was during the “Golden 
age of shells” that the fundamental discipline — shell theory — emerged, initial hypotheses and assumptions 
were accepted, resolving equations adequately describing the behavior of shells were formed, simplifications 
of the equations of the shell theory were proposed, and qualitative studies of a number of specific problems 
appeared. 
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8. Information on Publications After 2000 about Calculation 
of Cylindrical Shells with Second-Order Algebraic Middle Surfaces 

and Their Application in Architecture and Construction 

8.1. Application of Cylindrical Shells with Second-Order Algebraic Middle Surfaces 

Many review [3] and scientific [11] papers, monographs [29] and reference books [30] are devoted to 
the application of cylindrical shells, structures and cylindrical surfaces in architecture, construction and 
mechanical engineering. In all these works, there are sections on structures and products in the form of 
second-order cylindrical algebraic surfaces. 

8.2. Information on Publications After 2000 About Calculation 
of Cylindrical Shells With Second-Order Algebraic Middle Surfaces 

As already mentioned in the Introduction, in the last quarter of a century, almost no studies have been 
conducted to determine the optimal cylindrical shell among the five cylindrical shells with the same overall 
dimensions and boundary conditions and subjected to the same external load. There is only paper [32], where 
the stability of the computational algorithm is studied when one type of cylindrical surface is replaced with 
another, which can simplify the computation. It is argued that the replacement of hyperbolic and elliptic 
cylindrical shells with a parabolic shell simplifies the calculations. 

All other scientific articles are devoted to studies on the calculation of specific cylindrical shells of the 
same shape for strength, stability, and dynamics, i.e., each article is devoted to only one type of closed or 
open, thin or thick cylindrical shells. The most complete review of works on the calculation of three 
degenerate cylindrical shells in the form of second-order algebraic surfaces is given in article [11], which 
contains 14 references on the subject. 

Almost all new studies are devoted to circular cylindrical shells. It is noted in [33] that, despite the 
extensive literature on the development of shell theory, the comparative analysis of analytical and numerical 
solutions is not sufficiently covered. One of the first works devoted to this direction in the study of natural 
frequencies and vibration modes of closed circular cylindrical shells is [33]. 

Very interesting results have been obtained in the experimental study of the behavior of masonry 
cylindrical roofs under the settlement of one of the longitudinal rectilinear supports, due to which longitudinal 
cracks appear [34]. 

Many papers claim that the momentless theory provides acceptable results for thin shells with a ratio of 
thickness to internal diameter equal to 0.1 and having the shape of shells of rotation [13]. Examples of using 
the momentless theory for cylindrical shells subjected to axisymmetric loading are given mainly in textbooks 
for students of various fields [13; 35; 36]. 

In monograph [6], the maximum stresses and displacements in an elliptical tube caused by uniform 
normal pressure are determined. It is found that the maximum normal stresses in the direction of the ellipse 
will occur at the ends of the minor semi-axis, the shear stresses will reach the highest value at the shell 
supports. The normal axial stresses reach their maximum in the middle of the span. The authors of monograph 
[6] point out that the results obtained by the momentless shell theory are not applicable to long pipes. Similar 
conclusions were made in Section 5 and in the “Results” section of the presented paper. 

With a major excess of studies on open or closed circular cylindrical shells, there are works whose 
authors believe that non-circular shells are an interesting object for research, for example, elliptic, in which 
the values of semi-axes Rx and Ry act as variable parameters. At their specific values, it is possible to achieve 
a decrease or increase in the minimum natural frequency relative to the cylindrical configuration without 
changing the mode of vibration. Paper [37] shows the variation of natural frequencies of vibration depending 
on the type of boundary conditions set at the edges of an elliptic shell and the frequencies of vibration of a 
cantilever steel non-circular shell at different lengths of one semi-axis. 
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The aeroelastic stability of closed cylindrical shells with an elliptical cross-section streamlined from the 
outside by a supersonic gas flow is investigated in article [38] in a three-dimensional setting using the 
mathematical model and its numerical realization based on the finite element method. Using the developed 
program, the influence of kinematic boundary conditions, dimensions, and the ellipticity parameter on the 
critical characteristics of buckling in the form of flutter was analyzed. It is demonstrated that in the cantilever 
case, there exist such ellipse semi-axis ratios that provide higher aeroelastic stability boundaries as compared 
to a similar circular configuration. 

Finite element modeling and buckling analysis of a composite closed elliptic cylindrical lattice shell 
under axial compression and lateral bending were studied for spacecraft in [31]. Here, the natural vibration 
modes of the considered product are obtained and it is found that the structure and geometry of the object 
affect the magnitude of the critical load and the natural vibration modes. 

There are studies on the determination of strength of parabolic cylindrical shells. For example, FEM 
was used to numerically investigate the behavior of a straight parabolic cylindrical shell with supports at four 
corners, subjected to dynamic loading, when increasing the shell height or its thickness [39]. The tabular and 
graphical results of the study were obtained using the standard SAP 2000 software. 

A numerical study, performed together with the experimental one, proves the effect of cracks in 
parabolic cylindrical reinforced concrete shells on the static and dynamic behavior of the studied shells [40]. 
The obtained results will help to determine the choice of shell repair times. 

In [41], it is argued that parabolic cylindrical panels made of memory polymers are very useful in 
spacecraft that are subjected to dynamic (vibration) loads. 

One of the first attempts to select an optimal shell among shells with different cross-sections was made 
in [42], where single-layer shells with a triangular lattice with circular, catenary and parabolic cross-sections 
under a distributed load such as self-weight were considered. It is established that the shells of greatest mass 
will have a cross-section in the form of a catenary curve. The same article presents graphs of the relationship 
between the mass of the three considered lattice shells and the height. The parabolic shell will be the most 
economical in terms of material. If the maximum deflection of the structure is taken as the main criterion, the 
shell in the shape of a catenary curve has an advantage over the circular and parabolic shapes. 

An interesting approach to the calculation of long open cylindrical building structures of non-circular 
cross-section is proposed in [43], where the stress-strain state of a structure obtained using a beam model with 
supports at two ends and using the equations of linear shell theory is studied. 

8.3. Conclusion of Section 8 

The presented brief review of the studies of cylindrical roofs and closed circular and elliptic shells 
carried out over the last 25 years shows a decline in interest in their investigation. The only exceptions are 
closed circular cylindrical shells, which have found applications in underground structures [44] and in 
mechanical engineering [45]. However, there are still unsolved problems. For example, as mentioned above, 
there is still no answer to the question of the optimal shell with respect to the five cylindrical shells shown in 
Figures 1–4 and Figure 5, which are subjected to some static or dynamic load. There are practically no studies 
on the determination of radial displacements of a hollow cylinder under the combined action of internal 
pressure, centrifugal forces, and temperature effects, which is very important in the manufacture of products 
in the field of mechanical engineering [46]. 

To determine the strength and dynamic characteristics of cylindrical objects, numerical methods and 
standard computer systems are almost always used. Analytical methods are developed only for individual 
cases. 

The form of cylindrical shells, shell structures and cylindrical external outlines of buildings, defined by 
second-order algebraic surfaces, is used very widely by architects and civil and mechanical engineers in the 
XXI century. 

A brief review of studies on the strength, stability, and dynamics of cylindrical shells conducted over 
the last 25 years confirms the conclusions of V.V. Novozhilov and other scientists in the field of mechanics 



Кривошапко С.Н. Строительная механика инженерных конструкций и сооружений. 2024. Т. 20. № 6. С. 567–592 
 

 

РАСЧЕТ ТОНКИХ УПРУГИХ ОБОЛОЧЕК  587 

[6] that the “Shell Theory” fundamental discipline becomes one of the sections of applied mathematics. 
In this case, the theory is used only to write out the initial system of equations. 

An investigation of recent publications shows that the calculation of cylindrical shells is currently 
associated with the consideration of multilayered walls, geometrical and physical nonlinearities, new 
structural materials [41] and new types of external static, dynamic [47] and thermal [46] loads, sometimes 
after the adoption of refining hypotheses [48]. 

After circular cylindrical shells, the most popular are parabolic cylindrical shells, especially as roofs for 
warehouses, industrial and exhibition halls, and elliptic cylindrical shells for mechanical engineering projects. 
Open cylindrical shells play a much more important role in construction. 

Section 8 summarizes only the main directions of research on cylindrical shells in the form of second-
order algebraic surfaces and which have been presented in publications over the last 25 years. Additional 
information on the topic can be found in review and scientific articles [11; 49; 50; 51]. 

9. Results 

A comparative analysis of five thin shells under a static load of self-weight type according to the 
momentless shell theory has been performed. 

1. Three formulas (4) in explicit form are obtained for the determination of internal membrane forces in 
the five shells defined by second-order algebraic surfaces with boundary conditions in terms of forces, 
acceptable for the momentless theory of thin shells. 

2. Three formulas (5) in explicit form are obtained for the determination of internal membrane forces in 
the five shells defined by second-order algebraic surfaces with two specified boundary conditions in terms of 
forces at two opposite ends for normal forces in the form Nv = 0 involving the momentless theory of shells. 

3. The main geometric characteristics of the five second-order middle algebraic surfaces are presented. 
4. It is shown that in the framework of the approximate momentless theory of shells, the parabolic 

cylindrical thin shell (Figure 1) and the cylindrical thin shell with an incomplete ellipse in the cross-section 
(Figure 4) perform best under external load similar to self-weight, and the greatest internal forces arise in the 
cylindrical thin shell with a semi-ellipse in the cross-section (Figure 2). 

5. It has been established that in cylindrical shells, the axial normal forces Nv determined using the 
momentless theory depend significantly on the square of the shell length l, which is clearly seen from the 
third formulas of systems (4) and (5). This is contrary to common sense, so it is necessary to agree with the 
conclusions of many scientists in the field of mechanics and the author, that the application area of the 
momentless theory is limited to short cylindrical shells, or to take into account that long shells behave 
according to the beam model with hinged supports at the ends [23]. However, cylindrical shells cannot be 
calculated as beams with curvilinear contour, because they generally do not follow the law of plane sections 
and do not obey the hypothesis of invariability of the cross-sectional shape. Deplanation of cross-sections 
occurs. 

6. The known statements of the momentless shell theory that the forces determined in the shell regions 
farthest from the supports, for which boundary conditions cannot be set, are the closest to the true internal 
forces in shells, are confirmed. In the considered cases, these regions are located around the coordinate line 
u = 0. 

The following has been done with respect to the general linear theory of shells: 
7. A system of three partial differential equations (8) of the eighth order with respect to the displace-

ments of the middle surface of a cylindrical shell defined in the curvilinear coordinate system u (–1 ≤ u ≤ 1), 
v (0 ≤ v ≤ 1) is derived for the first time for possible future application. 

8. It is shown that the internal bending moments Mu, Mv and torque H as well as shear forces Qu, Qv  
do not depend on displacements uv along the straight cylinder generators. 

9. It was found that no studies on the calculation and application of hyperbolic cylindrical roofs have 
been published after 2000. 
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10. Conclusion 

With the modern development of numerical calculation methods and computer technology, most 
approximate methods of calculation of curvilinear civil and mechanical engineering structures of shell kind, 
including the momentless theory of shells, are practically not used. However, virtually all textbooks on 
structural mechanics of shells have sections devoted to the momentless theory of shells. The materials 
contained in this article can be used in the teaching process to illustrate the applicability of approximate 
methods of shell analysis. 

In the practice of thin shell design, the above materials are unlikely to be used, if only for preliminary 
assignment of thicknesses of cylindrical shells. All well-known scientists in the field of mechanics related to 
the design of thin shells state that when selecting the shell shape, one should strive for the shell behavior to 
be close to momentless. 

Having the formulas for calculating the values of internal forces, it is possible to determine the boundary 
conditions at the edges of the shell in terms of displacements and forces, by satisfying which it is possible to 
obtain a momentless stress-strain state in the considered shell. However, the required boundary conditions 
can be created only theoretically, but it is necessary to strive for it. 

It may seem that the momentless theory of cylindrical shells is practically useless due to a large number 
of constraints. However, in a number of cases it allows to obtain simple and sufficiently accurate solutions. 
In particular, it is applicable to the calculation of shells supported by spandrels, since the length of the 
compartments between them is set relatively small. The momentless stress state is taken as the basic stress 
state, and the stability of cylindrical shells in the basic stress state is investigated. 
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