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Abstract. The work is devoted to the application of the concept of specific strength for the analysis of the degree of utilization 
of mechanical properties of beam material under combined loading. The beam is studied and force diagrams are constructed 
for various types of loads, such as pure bending with tension, pure bending with tension and torsion, pure bending with 
torsion, and the strength utilization factor of a beam with an arbitrary cross-section is obtained. The research method is 
based on the superposition of stress states with the determination of the difference between the resistance diagrams. The 
concept of material resistance to fracture in the form of ultimate stresses distributed over the body volume is introduced. 
The method of calculating the specific strength for a beam under combined stress, as well as for thick-walled pipes loaded 
with internal pressure, is given. The relationship between the beam cross-section of the beam and the specific strength is 
presented, followed by a conclusion for the optimal application of the beam with the cross-section used. 
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Аннотация. Исследовано применение понятия удельной прочности для расчетного изучения степени использо-
вания механических свойств материала бруса при его работе в условиях сложного сопротивления. Представлено 
исследование бруса с дальнейшим построением эпюр с различными видами нагрузок, таких как чистый изгиб с рас-
тяжением, чистый изгиб с растяжением и кручением, чистый изгиб с кручением и получен коэффициент использо-
вания несущей способности бруса с произвольным поперечным сечением. Метод исследования основан на суперпо-
зиции напряженных состояний с определением различия между эпюрами сопротивления нагружению. Введено 
понятие сопротивления материала разрушению в виде предельных напряжений, распределенных по объему тела. 
Приведен метод расчета удельной прочности для сложнонапряженного бруса, а также толстостенных труб, нагру-
женных внутренним давлением. Представлена зависимость сечения бруса от удельной прочности, с последующим 
выводом для наиболее выгодного использования бруса с используемым сечением. 

Ключевые слова: механика твердого тела, композиционный материал, разрушения твердых материалов и конструк-
ций, деформация 
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Для цитирования: Kurbanmagomedov A.K., Morozov E.M. Specific strength under combined loading // Строительная меха-
ника инженерных конструкций и сооружений. 2024. Т. 20. № 6. С. 552–566. http://doi.org/10.22363/1815-5235-2024-20-
6-552-566 

1. Introduction 

Solving the problem of increasing strength of structures while simultaneously reducing weight and with 
minimal consumption of scarce materials leads to the development of methods for evaluating the degree of 
utilization of the shape and dimensions of the body and the strength of the material. These methods were 
developed first along the path of assessing the shape and dimensions of the cross-section [1–6] at a constant 
distribution of material properties across the cross-section. To create a body of equal strength in all its zones 
and in all directions, it is necessary to evaluate the degree of approximation to an equal-strength state and 
the correspondence of the stress state in each element of the body to the material strength in the same 
element. 

Since in most cases material properties are distributed non-uniformly over the cross-section, either as 
a result of technological side processes or as a result of their deliberate changes, evaluation of the load-
bearing capacity of the body must be made taking into account the variability of mechanical properties 
across the cross-sections of the body. Reasonable use and creation of variability in material properties plays 
a similar role to the rational choice of body shape. Recently, methods have been proposed for estimating the 
load-bearing capacity of bodies taking into account the variability of not only the stress distribution, but 
also the resistance distribution [2; 7; 8]. 
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In works [7–9] the main conclusion was that from the point of view of increasing the specific strength, 
it is not the stress distribution itself that is important, but the mutual correspondence of the stress and 
resistance distributions, and it is necessary to add the analysis of the stress distribution to the analysis of the 
resistance distribution.  

2. Methods 

Attempts to assess the load-bearing capacity of bodies and individual cross-sections have been made 
for the simplest loading cases — tension, pure bending, torsion. The bearing capacity of cross-sections is 

evaluated by specific strength [9–11] using a nondimensional coefficient θC , called the strength utilization 

factor, which varies from 0 to 1. Specific strength is numerically characterized by coefficient θC .  

maxmax

,F
C

F
avc

ydF M

y Fy dF
=

σ
θ =

σσ




 (1) 

where M  is the load-bearing capacity of the cross-section; maxy  is the half-height of cross-section; avσ  is 

the average reduced resistance of the cross section; F  is the area of the cross-section under study. 
In evaluation of the bearing capacity, the existing bearing capacity must be compared with the 

maximum possible one and, thus, the unused reserves are identified. The given formula (1) allows to 
evaluate the degree of utilization of the mechanical properties of the material and the geometry of the body 
based on the specific strength of the body, i.e. strength per unit cross-sectional area of the body, per unit 
“arm” and per unit of average strength of the material. 

The denominator in formula (1) represents the load-bearing capacity of some ideal cross-section, the 
entire area F of which is concentrated at the end of the “arm” maxy , and the material of which has an 

average resistance of avσ . 

Based on this, it can be said that the specific strength of a body is the ratio of the bearing capacity of 
the body to the bearing capacity of an ideal body with the same dimensions. An ideal body (cross-section) 
has an average resistance, i.e. resistance equal to 

1
av cF

dF
F

σ = σ , (2) 

where cσ  is the reduced resistance of the material of the cross-section, depending on the coordinates of the 

cross-section points. The reduced resistance based on the most common theories of strength (first and third) 
is either the resistance to brittle fracture, or the yield strength, or variable resistance to plastic deformation if 
hardening is taken into account. 

Thus, specific strength (similar to efficiency) is a dimensionless number varying from 0 to 1. A specific 
strength value equal to one (achieved only in rare cases) corresponds to 100% utilization of the given 
dimensions and strength of the material. 

Below is an attempt to calculate the specific strength value for combined loading cases for a straight 
beam. 

In the general case, the internal forces in the given section of a beam form the resultant vector and the 
resultant moment [11; 12], which can be decomposed into the following components (Figure 1). The resultant 
moment is decomposed into two components: perpendicular to the cross-section plane, TM  (torque moment), 

and lying in the section plane, BM  (bending moment). The resultant vector — into force P perpendicular to 

the cross-section (applied at the center of gravity of the cross-section) and the shear force, which is not 
taken into account. 
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Figure 1. Two types of ideal cross sections
S o u r c e: made by A.K. Kurbanmagomedov

An ideal section can be represented as two concentrated 
areas iF  spaced from each other at the maximum possible distance 

h (dimension) perpendicular to the BM  vector (Figure 1). This type 

of cross-section is ideal for bending moment apprehension. For 
torsion resistance, a thin-walled ring of diameter h with area KF  is 

ideal. It is assumed that steady state is maintained for ideal sections. 
Both types of cross-sections are able to carry axial load. Thus, the 
ideal cross-section for a combined load is assumed to consist of 
the sum of two separate types of ideal cross-sections [13–15]. 

The load-bearing capacity of the real cross-section is 
determined by a set of values , ,B TP M M , which satisfy the strength 

conditions (according to the chosen strength theory) with a certain 
reserved strength. 

In order to ensure that the specified load acting on the real 
cross-section can also be accepted by the ideal cross-section, it is necessary to find the values of the areas 

iF  and KF  of the ideal cross-section. The required areas iF  and KF  can be found from the strength 

conditions for both types of ideal cross-sections. 
For the part of the ideal cross-section subjected to bending and axial load, the following is obtained: 

av
2

.B

i K i

MP

F F hF
σ = +

+
 (3) 

For the annular part of an ideal cross-section, subjected to torsion and axial load, the following is 
obtained:  

  according to the 1-st theory of strength 

2 2

av
2

2 4 T

i K i K K

MP P

F F F F hF

   
σ = + +   + +   

,  (4) 

  according to the 3-rd theory of strength 

2 2
2

av
2

4 T

i K K

MP

F F hF

   
σ = +   +   

.   (5) 

The presented equations determine the minimum required areas for carrying maximum loads , P , BM

.TM  With such values of the areas of the ideal cross-section, loads , P , BM TM  will be ultimate not only 

for the given cross-section, but also for the ideal cross-section. The sum of areas Fi +FK gives the total area 
of the ideal cross-section required to carry the ultimate sum of all types of loads. Moreover, each of the two 
areas resists with ultimate efficiency only to its own type of load [16–19]. The total area of the ideal cross-
section is less than (or equal to) the area of the given cross-section. To assess the degree of utilization of the 
material properties and the shape of the cross-section, the ratio of the areas can be taken: the minimum area 
required to withstand the specified combined ultimate load, and the given area that carries the specified 
combined ultimate load. Then the coefficient evaluating the specific strength will be 

i K
C

F F

F

+θ = , (6) 

where ,i KF F  are the required values of ideal cross-sectional areas calculated using equations (3), (4) or (5). 
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Under the action of only one type of load, coefficient Sθ  according to formula (6) coincides with the 

strength utilization factor (1) according to the work of N.D. Sobolev and Ya.B. Friedman [7–9]. 
In fact, substituting the value of the ultimate bending moment from (3) into (1) results in 

max av

.i
C

FM

y F F
θ = =

σ
 

Thus, the ratio of the minimum required area to the given one evaluates the specific strength of the 
cross-section in the same way as the ratio of the load-bearing capacities. Specific strength in terms of 
bearing capacity under combined load can be characterized by the ratio of ray segments from the coordinate 
origin to the real and ideal ultimate load curves: 

2 2 2

2 2 2
,i T

C

i K

P M M

P M M

+ +
θ =

+ +
 

where the numerator is the ultimate load of the given cross-section, and the denominator is the ultimate load 
of the ideal cross-section, the area of which is equal to the area of the given cross-section. 

However, this method must be abandoned, since adding values with different dimensions can lead to 
inconsistencies. 

In formulas (3)–(5), there are maximum loads for the given cross-section, i.e. they satisfy the strength 
condition according to the maximum normal stress theory 

2
2

с2 4B B

Z Z

M MP P
y y

F F

 
σ = + + + + τ 

  
.   (7) 

or the strength condition according to the maximum shear stress theory 

2
24B

с
Z

MP
y

F

 
σ = + + τ 

 
.   (8) 

Here τ  is the shear stress at the tangency point of the cσ and σ  diagrams. 

The specific strength evaluated using the strength utilization factor (6) shows the degree of utilization 
of the cross-sectional shape and mechanical properties of the material. 

As an example of specific strength calculation, some special cases of combined resistance are considered 
further. 

2.1. Pure Bending with Tension 

1. Let a beam have rectangular cross-section and constant material resistance. Bending moment BM  

acts in the principal plane. Using the 3-rd theory of strength according to equation (8) for the given cross-
section (rectangle), the following is obtained: 

6
c BF P M

h
σ = + .   (9)  

Substituting the loads from (9) into (3) and then into (5), the strength utilization factor is obtained: 

av av

2 4
θ 1

σ
B B

C
с

M MP

F hF hFσ σ
= + = − .  
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Figure 2. The combined effect 

of bending and stretching on the beam  
S o u r c e : made by A.K. Kurbanmagomedov

In Figure 2, the values of θC  are plotted on the lines 

of ultimate forces and moments [1]. The specific strength 
of the body equal to 0.33 under bending increases linearly 

with the increase of ratio  
n

P

M
 and becomes equal to one 

in the absence of bending. 

2. Let the resistance increase linearly from 
σ

2
с  on the 

central axis to the value of σс  at the upper and lower 

points of the rectangular cross-section. The average 

resistance in this case is equal to 
3

4
σс .  

Here, when calculating the strength, it is necessary to distinguish between three cases (Figure 3) 
depending on the points of the cross-section at which the σ  and σс  diagrams contact. 

 

 
Figure 3. Stress and resistance diagrams for bending and stretching 

S o u r c e: made by A.K. Kurbanmagomedov 

 
From equation (8), the following is obtained: 

6σс
M

F P
h

= + , (10) 

where for the above three cases the loads are limited as follows: 
 

Case І Case 2 Case 3 

σ
1

2 cP F=  

σ
1

2 cM W<  

σ
1

2 cP F=  

σ
1

2 cW W=  

σ
1

2 cP F<  

σ
1

2 cM W>  

 
The strength utilization factor is obtained from (6) by substituting the loads from (10) into (3): 

θ
σ σ

4 8

3 3C
с с

P M

F hF
= + . 
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Figure 4. The strength utilization factor under combined 

bending and stretching of the beam 
S o u r c e: made by A.K. Kurbanmagomedov 

In Figure 4, strength utilization factor θC  is 

plotted on the line of ultimate loads P and MB. 

At a value of 6
M

P
h

=  the specific strength is the 

highest due to the coincidence of σ and σ
C

 curves. 

In tension only, the specific strength decreases to 
0.66, and in bending only to 0.45. 

In Figure 4, strength utilization factor θC  is 

plotted on the line of ultimate loads P and MB. 

At a value of 6
M

P
h

=  the specific strength is the 

highest due to the coincidence of σ and σ
C

 curves. 

In tension only, the specific strength decreases to 
0.66, and in bending only to 0.45. 

2.2. Tension with Pure Bending and Torsion 

3. Let the cross-section be round with constant resistance. 
For such a cross-section, the following is obtained from (8): 

( )
2 2

2
8 64σ B T

c

M M
F P

d d
   = + +   
   

. 

Substituting these load values into formulas (3) and (5) and then into (6), the load-bearing capacity 
coefficient is obtained, which is plotted for the values of the ultimate loads corresponding to the coordinate 
planes (Figure 5). 

 

 
Figure 5. The combined effect of stretching, torsion and bending on the beam 

S o u r c e: made by A.K. Kurbanmagomedov 
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4. Let the same beam have variable resistance of the cross-sectional material. At the center of the 

round cross-section the resistance is equal to 
σ

2
c . The resistance increases linearly along the radius to the 

value of σ
C

 at the circumference. The average cross-sectional resistance according to (2) is equal to 
5σ

6
c . 

The point of contact of diagrams σ  and σ
C

 will be in the center of the circle at 

σ

2
cP

F
= ; ( )

2 2
2

8 64σ B T
c

M M
n F P

d d
   > + +   
   

. 

Contact of σ and σ
C

 will occur on the surface if 

σ
;

2
cP

F
<  

22
2σ .4 kTB

c
p

MMP

F W W

  = + +        
  

If the stress and resistance diagrams contact simultaneously both in the center and on the surface, then 

22
2 σ

σ 4
2

c B T
c

p

M M

W W

  = + +        
. 

Based on these cases, Figure 6 shows the surface of ultimate P, MB, MT  and the strength utilization 

factor. The most favorable load ratios are determined by the greatest mutual approach of the σ  and σ
C

 

diagrams, at which the specific strength is the highest [17–20]. 

 

 
 

Figure 6. Cross-section of regions on coordinate planes 
S o u r c e: made by A.K. Kurbanmagomedov 
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2.3. Pure Bending with Torsion 

5. Let the cross-section be elliptical with constant resistance. The bending moment acts in the plane of 
the major axis of the ellipse. When the reduced stress at the end points of the major axis of the ellipse 
reaches the resistance value, the load-bearing capacity of the section will be exhausted and according to (8) 

2
2 2 2 2σ

16 c B T

a
F M M= + . 

In this respect, there are three possible cases: 
 

I. II. III. 

2π
σ

4T c

ab
M =  

2 2σ

4
c

B

F
M a b< −  

2π
σ

4T c

ab
M =  

2 2σ

4
c

B

F
M a b= −  

2π
σ

4T c

ab
M <  

2 2σ

4
c

B

F
M a b> −  

 

In case 1, σ  touches σ
C

 at the extreme points of the minor axis of the ellipse (with that a < b); in case 

3 — at the extreme points of the major axis of the ellipse (a > b); in case II (a = b) — simultaneously at 
both of these and other points of the cross-section. 

Plotting strength utilization factor on the curves of the ultimate MB and MT (Figure 7), it can be 
observed that the specific strength depends on the ratio of semi-axes of the ellipse and with an increase in 

the proportion of torque it varies from 0.25 to 0.5 
b

a
. 

 

 
 

Figure 7. The strength utilization factor in case of combined torsion and bending 
S o u r c e: made by A.K. Kurbanmagomedov 
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For a particular ratio between bending and torque ultimate moments, the most favorable ratios 

of ellipse semi-axes can be found. For example, for case II, equating the derivative of θC  in terms of 
b

a
 

to zero, the most favorable cross-sectional shape is obtained at 
b

a
 = 0.89. 

Let the application of the concept of specific strength to the calculation of the optimal cross-section 
dimensions be demonstrated using a specific example. 

Cantilever steel tubular shaft is subjected to static bending moment BM Pl=  and torque МT = Pa. 

The shaft has variable strength in the normal annular cross-section.  
The outer layer of the shaft with a thickness of σ = 5 mm has a strength K times greater than the core 

(increasing the strength of the surface layers can be structurally achieved, for example, by freeze casting a 
stronger material onto the core). 

The optimal value of the internal diameter d is determined assuming that the remaining parameters are 
specified and constant, and the violation of strength occurs in the subsurface layer of the shaft. 

The following notation is adopted: 
D = 30mm is the outer diameter of the shaft annular section; 

σ
sl

, σ
sc

 are the resistances (strengths) of the material of the surface layer and the shaft core 

respectively; 

;
d

C
D

=  
δ

0.167;h
D

= =  
50

1.66.
3

σ

0σ
sl

sc

K = = =  

From (8), the ultimate value of the force is obtained as 

( )
( )

4 4

2 2

1
.

3 2δ

σ

2

scD c
P

D l a

π −
=

− +
 

The average resistance according to (2) will be 

( ) ( )2
.

4 1
σ σ σ σ

1av sl sc sc

h h

c

−
= − +

−
 

Substituting P and σ
av

 into (3), (5) and (6), the strength utilization factor is obtained as 

( )( )
( ) ( )( ) ( )

4

2 2 2

2 1
θ

2 1 2 4 1 1 1
C

l a c

h h h k c l a

+ −
=

 − − − + − + 
. 

From the condition of maximum specific strength of the cross-section 
θ

0C

с

∂ =
∂

, the equation for 

determining the best value of C is obtained: 

( )( )4 28 1 1 2 1 0с h h k c − − − + + =  . 

For the considered case, this results in C = 0.57, or the internal diameter should be equal to 17 mm. 
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2.4. Specific Strength of Thick-Walled Pipes 

The specific strength of a beam under combined loading was discussed above. Let the definition of 
specific strength be applied to evaluate the extent to which the strength of thick-walled pipes loaded with 
internal pressure is utilized [21–23]. 

A thin-walled pipe is assumed to be an ideal body, based on obtaining the maximum load-bearing 
capacity for a given internal radius of the pipe, considering that the entire thickness of the thick-walled pipe 
under consideration is concentrated in its internal diameter. The resistance of the material of an ideal pipe, 
according to definition, is equal to the average resistance of the material of the given thick-walled pipe 
[23–26]. 

Then the reference load-bearing capacity of an ideal pipe will be: 

( )σ
,av

id

R r
P

r

−
=  

where 
σ

σ

R

cr
av

d

R r

ρ
=

−


 is average resistance. 

The specific strength of a thick-walled pipe will be: 

( )θ ,
σC

id av

P pr

P R r
= =

−
 

where p  is the load-bearing capacity of this pipe; R, r are the outer and inner radii of the thick-walled pipe 

under consideration. 
The resulting coefficient can be represented as a product of the coefficients of equal strength and 

shape: 

,
'

θ θ θ
'C p sh

id

P P

P P
= =  

where 'P  is the maximum internal pressure in the thick-walled pipe, in which the reduced stresses σ  

throughout the entire thickness of the pipe coincide with the σ
c
 resistance diagram. 

3. Results and Discussions 

The coincidence of the diagram of reduced stress from internal pressure with the resistance diagram 
can be achieved, for example, by continuously increasing the elastic modulus along the thickness of the pipe 
from the inner to the outer surface. The practical implementation of a continuous change in the elastic 
modulus according to the desired law is apparently difficult to achieve. 

The specific strength calculated for some cases of resistance of thick-walled pipes is given in Table.  
The Table shows that for a jointed pipe and for a pipe, part of the wall of which has crossed into the 

plastic zone, the strength utilization factor is approximately the same. In the case of a very thick pipe wall, 
the specific strength drops significantly, which indicates that pipes with very thick walls are unprofitable. 
By changing the diagram of the yield strength along the thickness of the pipe, it is possible to increase the 
strength utilization of the pipe yet in the elastic stage to the degree of utilization in case of plastic operation 
of the pipe with constant resistance. 



Material specifications 

Material 

T
em

pe
r 

Chemical Composition 

Physical Properties 

Description and Application 

T
es

t b
y 

L
ab

or
at

or
y 

R
ec

ei
vi

ng
 in

sp
ec

tio
n 

D
im

en
sio

n 

Te
ns

ile
 S

tr
en

gt
h 

Lb
s/S

q.
In

. M
in

. 

Y
ie

ld
 S

tr
en

gt
h 

Lb
s/S

q.
In

.M
in

. 

E
lo

ng
at

io
n 

M
in

. 

Rockwell 
Hardness 
Number 

Cold Bend 
Angele 

Cold Finished 
High Yellow Brass

Copper – 65% 

Zinc – 35% 

Hard 

Copper – 64.50–67.50% 
Zinc – 32.09% 
Lead – 0.35% 
Iron – 0.06% 

Cold 
Drawn 

Seamless 
Tubing 

All sizes 

68.000 40.000 — B75 to B85 
90o around 
radius equal
to thickness 

• Good for flat work.

• Suitable for ornamental plate
or panel parts.

• Used for Squirrel Cage rotor
and rings.

None

Dimensions, 
Tolerances, 
Quality and 
Appearance 

Cold drawn 
Seamless tubing

high yellow brass 

Copper – 67.5% 

Zinc – 32% 

Lead – 0.5% 

Light 
Anneal 

Copper – 65.00–8.00% 
Zinc – 0.98% 
Lead – 0.80% 
Iron – 0.07% 
Tin –0.15% 

Cold 
Drawn 

Seamless 
Tubing 

All sizes 

45.000 18.000 25% — 

180o around 
Pin equal 

to 1–
1

2
times 

• A 7.5 cm long piece of tubing,
after being split lengthwise
will withstand opening out flat
without showing cracks or
flaws.

• Example of use: Coil spools
when ends are to be spun over.

None

Dimensions, 
Tolerances, 
Quality and 
Appearance 

Cold drawn 
Seamless tubing

high yellow brass 

Copper – 67.5% 

Zinc – 32% 

Lead – 0.5% 

Half 
hard 

Copper – 65.00–68.00% 

Zinc – 30.98% 

Lead – 0.80% 

Iron – 0.07% 

Tin – 0.15% 

Cold 

Drawn 

Seamless 

Tubing 

All sizes 

Physical properties on all sizes not available. 
May be obtained on specific sizes when desired. 

• Suitable for brass railings.
Also coil spools when not spun
over.

None

Dimensions, 
Tolerances, 
Quality and 
Appearance 

S o u r c e: made by A.K. Kurbanmagomedov 

Курбанмагомедов А.К., М
орозов Е.М

. С
троительная механика 

 

инженерны
х конструкций и сооружений. 2024. Т. 20. №

 6. С. 552–566 

П
РО

БЛЕМ
Ы

 ТЕО
РИИ УПРУГО

СТИ 
563



Kurbanmagomedov A.K., Morozov E.M. Structural Mechanics of Engineering Constructions and Buildings. 2024;20(6):552–566 
 

 

564  PROBLEMS OF THEORY OF ELASTICITY  

 

4. Conclusion 

The following conclusion is made based on the obtained results: 
1. The paper provides a method for calculating the specific strength for a beam under combined loading, 

as well as for thick-walled pipes loaded with internal pressure. 
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