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Abstract. The work is devoted to the application of the concept of specific strength for the analysis of the degree of utilization
of mechanical properties of beam material under combined loading. The beam is studied and force diagrams are constructed
for various types of loads, such as pure bending with tension, pure bending with tension and torsion, pure bending with
torsion, and the strength utilization factor of a beam with an arbitrary cross-section is obtained. The research method is
based on the superposition of stress states with the determination of the difference between the resistance diagrams. The
concept of material resistance to fracture in the form of ultimate stresses distributed over the body volume is introduced.
The method of calculating the specific strength for a beam under combined stress, as well as for thick-walled pipes loaded
with internal pressure, is given. The relationship between the beam cross-section of the beam and the specific strength is
presented, followed by a conclusion for the optimal application of the beam with the cross-section used.
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AHHoTaunus. VccienoBaHo NpUMEHEHUE NOHATUS YAEIbHOM MPOYHOCTU JUJISl PACUETHOIO M3YUYEHUS! CTEIEHU HCMOIb30-
BaHUS MEXaHHMYECKHX CBOWCTB Marepuaja Opyca MmpH ero paboTe B yCIOBHIX CIOKHOTO CONMPOTHBIEHHUA. [IpeacraBneHo
HccIenoBaHre Opyca ¢ JaJbHEHIINM ITOCTPOSHHEM S0P C Pa3NYHBIMH BHIAMH HArpy30K, TAaKUX KaK YHCTHIA M3rH0 ¢ pac-
TSODKEHHEM, YUCTBIH U3rH0 C PacTsSHKEHUEM M KpPYYEHUEM, YUCTBIM M3rH0 ¢ KpyYeHHEeM M MoTy4deH KO3 UIIMEHT HCIONb30-
BaHMs Hecyllel cnocoOHOCTH Opyca ¢ IPON3BOJIbHBIM TIOIIEPEYHBIM ceueHHeM. MeTos1 MCcCiIeIoBaHUsI OCHOBAH Ha CyIepIio-
3UIMH HAMPSDKEHHBIX COCTOSHUM € ONpeAeNeHHEeM Pa3IMyus MEXAy SII0paMH CONPOTHBIICHUS HarpykeHuio. BeneHo
MOHSITUE CONPOTHBJICHUS MaTepHaja pa3pylieHHIO B BUJE IPEACIbHBIX HaNPsDKEHHUH, paclpeesieHHbIX 110 00beMy Tela.
[TpuBenen Merox pacuera yIelnbHOM MPOYHOCTH JUIS CIOKHOHAIPSDKEHHOTO Opyca, a TakkKe TOJICTOCTEHHBIX TpyO, Harpy-
JKCHHBIX BHYTPEHHHUM JaBiieHHeM. [IpencraBiieHa 3aBUCUMOCTD ce4eHHs Opyca OT yIelIbHOM NPOYHOCTH, C MOCIEAYIOIINM
BEIBOZIOM TSI HAaHOOJIee BHITOHOTO MCTIONB30BAHUS Opyca C NCIIONb3YeMbIM CEICHUEM.

KuiroueBble ciioBa: MexaHHKa TBEPIOrO Telia, KOMIIO3UIMOHHBIH MaTepuall, pa3pylleHus] TBEPAbIX MaTepHalioB U KOHCTPYK-
nui, neopmanus

3asBienne 0 KOH(IUKTEe HHTepecoB. ABTOPHI 3asBIAIOT 00 OTCYTCTBHH KOH(IMKTA HHTEPECOB.

Bxaan aBropoB. Mopozos E.M. — Hay4HOE€ PYKOBOACTBO, KOHUEINLUS, Pa3BUTUE METOAOJIOIMU, UTOTOBBIE BBIBOIBI.
Kypbanmazomeoos A.K — aHanm3 pe3yapTaToB UCCIEIOBAHUS, IOATOTOBKA UCXOMHOTO TEKCTA, MOATOTOBKA HH(POTPadhUKOB,
HATOTOBBIE BBIBOJIBI.

Jost murupoBanus: Kurbanmagomedov A.K., Morozov E.M. Specific strength under combined loading // CrpoutensHas mexa-
HHMKa WHXEHEPHBIX KOHCTPYKIHMH u coopyxenuit. 2024. T. 20. Ne 6. C. 552-566. http://doi.org/10.22363/1815-5235-2024-20-
6-552-566

1. Introduction

Solving the problem of increasing strength of structures while simultaneously reducing weight and with
minimal consumption of scarce materials leads to the development of methods for evaluating the degree of
utilization of the shape and dimensions of the body and the strength of the material. These methods were
developed first along the path of assessing the shape and dimensions of the cross-section [1-6] at a constant
distribution of material properties across the cross-section. To create a body of equal strength in all its zones
and in all directions, it is necessary to evaluate the degree of approximation to an equal-strength state and
the correspondence of the stress state in each element of the body to the material strength in the same
element.

Since in most cases material properties are distributed non-uniformly over the cross-section, either as
a result of technological side processes or as a result of their deliberate changes, evaluation of the load-
bearing capacity of the body must be made taking into account the variability of mechanical properties
across the cross-sections of the body. Reasonable use and creation of variability in material properties plays
a similar role to the rational choice of body shape. Recently, methods have been proposed for estimating the
load-bearing capacity of bodies taking into account the variability of not only the stress distribution, but
also the resistance distribution [2; 7; §].
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In works [7-9] the main conclusion was that from the point of view of increasing the specific strength,
it is not the stress distribution itself that is important, but the mutual correspondence of the stress and
resistance distributions, and it is necessary to add the analysis of the stress distribution to the analysis of the
resistance distribution.

2. Methods

Attempts to assess the load-bearing capacity of bodies and individual cross-sections have been made
for the simplest loading cases — tension, pure bending, torsion. The bearing capacity of cross-sections is

evaluated by specific strength [9-11] using a nondimensional coefficient 0., called the strength utilization

factor, which varies from 0 to 1. Specific strength is numerically characterized by coefficient 0.

B IFG ydF B M
FccymaxdF ymaxFGav

(1

C

where M 1is the load-bearing capacity of the cross-section; y, .. 1s the half-height of cross-section; G, is

the average reduced resistance of the cross section; F' is the area of the cross-section under study.

In evaluation of the bearing capacity, the existing bearing capacity must be compared with the
maximum possible one and, thus, the unused reserves are identified. The given formula (1) allows to
evaluate the degree of utilization of the mechanical properties of the material and the geometry of the body
based on the specific strength of the body, i.e. strength per unit cross-sectional area of the body, per unit
“arm” and per unit of average strength of the material.

The denominator in formula (1) represents the load-bearing capacity of some ideal cross-section, the
entire area /' of which is concentrated at the end of the “arm” y, . , and the material of which has an

average resistance of o, .

Based on this, it can be said that the specific strength of a body is the ratio of the bearing capacity of
the body to the bearing capacity of an ideal body with the same dimensions. An ideal body (cross-section)
has an average resistance, i.e. resistance equal to

1
O =" [ ,0.dF , ()

where o, is the reduced resistance of the material of the cross-section, depending on the coordinates of the

c
cross-section points. The reduced resistance based on the most common theories of strength (first and third)
is either the resistance to brittle fracture, or the yield strength, or variable resistance to plastic deformation if
hardening is taken into account.

Thus, specific strength (similar to efficiency) is a dimensionless number varying from 0 to 1. A specific
strength value equal to one (achieved only in rare cases) corresponds to 100% utilization of the given
dimensions and strength of the material.

Below is an attempt to calculate the specific strength value for combined loading cases for a straight
beam.

In the general case, the internal forces in the given section of a beam form the resultant vector and the
resultant moment [11; 12], which can be decomposed into the following components (Figure 1). The resultant
moment is decomposed into two components: perpendicular to the cross-section plane, M, (torque moment),

and lying in the section plane, M, (bending moment). The resultant vector — into force P perpendicular to

the cross-section (applied at the center of gravity of the cross-section) and the shear force, which is not
taken into account.
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An ideal section can be represented as two concentrated
areas F, spaced from each other at the maximum possible distance

h (dimension) perpendicular to the M , vector (Figure 1). This type

of cross-section is ideal for bending moment apprehension. For
torsion resistance, a thin-walled ring of diameter / with area Fj is

ideal. It is assumed that steady state is maintained for ideal sections.
Both types of cross-sections are able to carry axial load. Thus, the
ideal cross-section for a combined load is assumed to consist of
the sum of two separate types of ideal cross-sections [13—15].

The load-bearing capacity of the real cross-section is
determined by a set of values P, M ,, M, , which satisfy the strength

conditions (according to the chosen strength theory) with a certain
reserved strength.

In order to ensure that the specified load acting on the real
cross-section can also be accepted by the ideal cross-section, it is necessary to find the values of the areas
F, and F; of the ideal cross-section. The required areas F, and Fy can be found from the strength

Figure 1. Two types of ideal cross sections
S ource: made by A.K. Kurbanmagomedov

conditions for both types of ideal cross-sections.
For the part of the ideal cross-section subjected to bending and axial load, the following is obtained:

P 2M,

Gav = *
F+F, hF,

1

3)

For the annular part of an ideal cross-section, subjected to torsion and axial load, the following is
obtained:
¢ according to the 1-st theory of strength

2 2
26,, = L P r4f 2Mr , 4)
F+F; \\F+F hFy
¢ according to the 3-rd theory of strength
P Y [(2m, )
o, = +4] =L | | (5)
F +F, hF,

The presented equations determine the minimum required areas for carrying maximum loads P, M,
M .. With such values of the areas of the ideal cross-section, loads P, M ,, M, will be ultimate not only

for the given cross-section, but also for the ideal cross-section. The sum of areas Fi +Fk gives the total area
of the ideal cross-section required to carry the ultimate sum of all types of loads. Moreover, each of the two
areas resists with ultimate efficiency only to its own type of load [16—19]. The total area of the ideal cross-
section is less than (or equal to) the area of the given cross-section. To assess the degree of utilization of the
material properties and the shape of the cross-section, the ratio of the areas can be taken: the minimum area
required to withstand the specified combined ultimate load, and the given area that carries the specified
combined ultimate load. Then the coefficient evaluating the specific strength will be
_ L+ Fg

0 =~ ©)

where F,,F, are the required values of ideal cross-sectional areas calculated using equations (3), (4) or (5).
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Under the action of only one type of load, coefficient 6¢ according to formula (6) coincides with the

strength utilization factor (1) according to the work of N.D. Sobolev and Ya.B. Friedman [7-9].
In fact, substituting the value of the ultimate bending moment from (3) into (1) results in
M F,

Op=— =1,
C ymaxFGaV F

Thus, the ratio of the minimum required area to the given one evaluates the specific strength of the
cross-section in the same way as the ratio of the load-bearing capacities. Specific strength in terms of
bearing capacity under combined load can be characterized by the ratio of ray segments from the coordinate
origin to the real and ideal ultimate load curves:

PP+ M+ M2
0

C =
P+ M? + M

b

where the numerator is the ultimate load of the given cross-section, and the denominator is the ultimate load
of the ideal cross-section, the area of which is equal to the area of the given cross-section.

However, this method must be abandoned, since adding values with different dimensions can lead to
inconsistencies.

In formulas (3)—(5), there are maximum loads for the given cross-section, i.e. they satisfy the strength
condition according to the maximum normal stress theory

2
ST J[Lﬁyj rart ”

F I,

or the strength condition according to the maximum shear stress theory

2
P My 5
=l =+=2y| +41°. 8
o \/(F IZ yj ! ( )

Here t is the shear stress at the tangency point of the G, and O diagrams.

The specific strength evaluated using the strength utilization factor (6) shows the degree of utilization
of the cross-sectional shape and mechanical properties of the material.

As an example of specific strength calculation, some special cases of combined resistance are considered
further.

2.1. Pure Bending with Tension

1. Let a beam have rectangular cross-section and constant material resistance. Bending moment M ,

acts in the principal plane. Using the 3-rd theory of strength according to equation (8) for the given cross-
section (rectangle), the following is obtained:

Fo,=P +%MB . )

Substituting the loads from (9) into (3) and then into (5), the strength utilization factor is obtained:

0, P 2M, _,_4M,

~ Fo, hFo,  hFs,
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In Figure 2, the values of 0. are plotted on the lines

of ultimate forces and moments [1]. The specific strength Py
of the body equal to 0.33 under bending increases linearly
. . . P Foc
with the increase of ratio —— and becomes equal to one > .
M < / '(/“0/
n f'? Vi
in the absence of bending. R <
P
: . . c
2. Let the resistance increase linearly from —= on the R. / >
0 Wo. 3Wo,. M,

central axis to the value of G, at the upper and lower
Figure 2. The combined effect

of bending and stretching on the beam
Source: made by A.K. Kurbanmagomedov

points of the rectangular cross-section. The average

. o . 3
resistance in this case is equal to ZGC.

Here, when calculating the strength, it is necessary to distinguish between three cases (Figure 3)
depending on the points of the cross-section at which the G and G, diagrams contact.

— 0o,
Py

Figure 3. Stress and resistance diagrams for bending and stretching
S ource: made by A.K. Kurbanmagomedov

From equation (8), the following is obtained:

Fo, :P+6%, (10)

where for the above three cases the loads are limited as follows:

Case I Case 2 Case 3

P:chC P:lFoc P<chsc
2 2 2

2

M<%WcsC Wlecc M>%Woc

The strength utilization factor is obtained from (6) by substituting the loads from (10) into (3):

4 P 8 M
=S —t— :
3 Fo, 3 hFo,
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Figure 4. The strength utilization factor under combined
bending and stretching of the beam
S o urce: made by A.K. Kurbanmagomedov

In Figure 4, strength utilization factor 0. is
plotted on the line of ultimate loads P and Ms.

M
At a value of P= 67 the specific strength is the

highest due to the coincidence of G and G . curves.

In tension only, the specific strength decreases to
0.66, and in bending only to 0.45.

In Figure 4, strength utilization factor 0. is
plotted on the line of ultimate loads P and Ms.

M
At a value of P= 67 the specific strength is the

highest due to the coincidence of G and G curves.

In tension only, the specific strength decreases to
0.66, and in bending only to 0.45.

2.2. Tension with Pure Bending and Torsion

3. Let the cross-section be round with constant resistance.
For such a cross-section, the following is obtained from (8):

2 2
(Foc)2=(P+8ﬁj +64[&j :
d d

Substituting these load values into formulas (3) and (5) and then into (6), the load-bearing capacity
coefficient is obtained, which is plotted for the values of the ultimate loads corresponding to the coordinate

planes (Figure 5).

Figure 5. The combined effect of stretching, torsion and bending on the beam
S ource: made by A.K. Kurbanmagomedov
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4. Let the same beam have variable resistance of the cross-sectional material. At the center of the

round cross-section the resistance is equal to 7” The resistance increases linearly along the radius to the

GC

value of G . at the circumference. The average cross-sectional resistance according to (2) is equal to

The point of contact of diagrams G and G, will be in the center of the circle at

2 2
PO n(ro,y > praMe]| vea[ Mo
F 2 d d

Contact of O and © c will occur on the surface if

2 2
£<G”;(562= £+MB +4 My
F 2 F W /4

P

If the stress and resistance diagrams contact simultaneously both in the center and on the surface, then

2 2
M M
o= 218 | 1q| 2L
2w w,
Based on these cases, Figure 6 shows the surface of ultimate P, Mz, Mr and the strength utilization
factor. The most favorable load ratios are determined by the greatest mutual approach of the ¢ and G

diagrams, at which the specific strength is the highest [17-20].

P

Figure 6. Cross-section of regions on coordinate planes
S ource: made by A.K. Kurbanmagomedov
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2.3. Pure Bending with Torsion

5. Let the cross-section be elliptical with constant resistance. The bending moment acts in the plane of
the major axis of the ellipse. When the reduced stress at the end points of the major axis of the ellipse
reaches the resistance value, the load-bearing capacity of the section will be exhausted and according to (8)

2

a
EFzG"Z =M, +M;.

In this respect, there are three possible cases:

18 II. II1.

2 2 2
M, = nc;b 5. M, - nc;b 5. M, < nab

MB<F‘TC Va’ -b’ MB:FI" a’-b MB>FIC Ja’ -b

In case 1, G touches G . at the extreme points of the minor axis of the ellipse (with that a < b); in case

3 — at the extreme points of the major axis of the ellipse (a > b); in case Il (a = b) — simultaneously at
both of these and other points of the cross-section.

Plotting strength utilization factor on the curves of the ultimate Mp and Mr (Figure 7), it can be
observed that the specific strength depends on the ratio of semi-axes of the ellipse and with an increase in

the proportion of torque it varies from 0.25 to 0.5 —.

a
P A
e(=0,5/i 1111
a H
1 2
-nab o, #
4 i
/
Y
p=sM /
b
/ :
4 —
L2 =—100,25 .
1 >
I FO c WG C A’MB

Figure 7. The strength utilization factor in case of combined torsion and bending
S ource: made by A.K. Kurbanmagomedov
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For a particular ratio between bending and torque ultimate moments, the most favorable ratios

: : : o . b
of ellipse semi-axes can be found. For example, for case II, equating the derivative of 0, in terms of —
a

. . , b
to zero, the most favorable cross-sectional shape is obtained at — = 0.89.
a

Let the application of the concept of specific strength to the calculation of the optimal cross-section
dimensions be demonstrated using a specific example.
Cantilever steel tubular shaft is subjected to static bending moment M, = P/ and torque Mr = Pa.

The shaft has variable strength in the normal annular cross-section.

The outer layer of the shaft with a thickness of 6 =5 mm has a strength K times greater than the core
(increasing the strength of the surface layers can be structurally achieved, for example, by freeze casting a
stronger material onto the core).

The optimal value of the internal diameter d is determined assuming that the remaining parameters are
specified and constant, and the violation of strength occurs in the subsurface layer of the shaft.

The following notation is adopted:

D = 30mm is the outer diameter of the shaft annular section;

G,, O, are the resistances (strengths) of the material of the surface layer and the shaft core
respectively;
d
c=2% n=2c0167; k=%0= 1 ¢6.
D D c 0

sc

From (8), the ultimate value of the force is obtained as

nD’ (l—c“)csC
P= :
32(D-28)NI* +d’

The average resistance according to (2) will be

_4h(1-h)

O 1-¢2

(0,—0,)+0

sc*

Substituting P and G into (3), (5) and (6), the strength utilization factor is obtained as

(Z+2a)(1—c4)

< 2(1-2m)[ 4h(1=n)(k=1)+(1-c*) NP +a®

0

From the condition of maximum specific strength of the cross-section aicc =0, the equation for
determining the best value of C is obtained:

¢t =[8h(1-n)(k-1)+2]c’ +1=0.

For the considered case, this results in C = 0.57, or the internal diameter should be equal to 17 mm.
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2.4. Specific Strength of Thick-Walled Pipes

The specific strength of a beam under combined loading was discussed above. Let the definition of
specific strength be applied to evaluate the extent to which the strength of thick-walled pipes loaded with
internal pressure is utilized [21-23].

A thin-walled pipe is assumed to be an ideal body, based on obtaining the maximum load-bearing
capacity for a given internal radius of the pipe, considering that the entire thickness of the thick-walled pipe
under consideration is concentrated in its internal diameter. The resistance of the material of an ideal pipe,
according to definition, is equal to the average resistance of the material of the given thick-walled pipe
[23-26].

Then the reference load-bearing capacity of an ideal pipe will be:

o, (R—-r)
id =
r

IRGCd p

r

where ¢, = 1s average resistance.

R—r
The specific strength of a thick-walled pipe will be:
P pr

eC:—:

Ba’ Gav(R_r)’

where p is the load-bearing capacity of this pipe; R, r are the outer and inner radii of the thick-walled pipe

under consideration.
The resulting coefficient can be represented as a product of the coefficients of equal strength and
shape:

0. =——=00,,
C P'Bd p - sh

where P' is the maximum internal pressure in the thick-walled pipe, in which the reduced stresses O

throughout the entire thickness of the pipe coincide with the G resistance diagram.

3. Results and Discussions

The coincidence of the diagram of reduced stress from internal pressure with the resistance diagram
can be achieved, for example, by continuously increasing the elastic modulus along the thickness of the pipe
from the inner to the outer surface. The practical implementation of a continuous change in the elastic
modulus according to the desired law is apparently difficult to achieve.

The specific strength calculated for some cases of resistance of thick-walled pipes is given in Table.

The Table shows that for a jointed pipe and for a pipe, part of the wall of which has crossed into the
plastic zone, the strength utilization factor is approximately the same. In the case of a very thick pipe wall,
the specific strength drops significantly, which indicates that pipes with very thick walls are unprofitable.
By changing the diagram of the yield strength along the thickness of the pipe, it is possible to increase the
strength utilization of the pipe yet in the elastic stage to the degree of utilization in case of plastic operation
of the pipe with constant resistance.
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4. Conclusion

The following conclusion is made based on the obtained results:
1. The paper provides a method for calculating the specific strength for a beam under combined loading,
as well as for thick-walled pipes loaded with internal pressure.
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