Polyploid giant cancer cells and their role in the formation of resistance to therapeutic treatment

封面

如何引用文章

全文:

详细

The review considers the properties of polyploid giant tumor cells – a new target for the development of cancer therapy. Various number of polyploid giant tumor cells are detected in almost all human solid tumors. Their number increases under the influence of hypoxia, radiation, and after chemotherapy. Previously, these cells were not considered to be worth studying as they do not proliferate and eventually die as a result of one of the cell death mechanisms action. Recent data have demonstrated that polyploid giant cells can give rise to daughter cells that possess tumorigenicity and are characterized as stem tumor cells. Giant tumor cells and daughter cells are involved in the processes of metastasis, recurrence, drug resistance formation and radio-resistance of tumors. The search is under way for molecular targets that could prevent the appearance or contribute to the elimination of previously formed polyploid giant tumor cells. The combination of traditional therapy that causes the death of proliferating tumor cells and allows their elimination, with the use of tools that could prevent the ­appearance of resistant polyploid giant cells and their daughter cells, can be the key to the effective treatment of malignancies.

作者简介

N. Vartanyan

Granov Russian Research Center for Radiology and Surgical Technologies

编辑信件的主要联系方式.
Email: nvartanian@mail.ru

Cand. Sci. (Biol.), Granov Russian Research Center for Radiology and Surgical Technologies

俄罗斯联邦, Saint Petersburg

A. Pinevich

Granov Russian Research Center for Radiology and Surgical Technologies; Saint Petersburg University

Email: agniapinevich@gmail.com

Cand. Sci. (Biol.), Granov Russian Research Center for Radiology and Surgical Technologies, Saint Petersburg University

俄罗斯联邦, Saint Petersburg

I. Bode

Saint Petersburg Universit

Email: st066216@student.spbu.ru

Graduate Student, Saint Petersburg University

俄罗斯联邦, Saint Petersburg

M. Samoylovich

Granov Russian Research Center for Radiology and Surgical Technologies; Saint Petersburg University

Email: mpsamoylovich@gmail.com

D. Sci. (Biol.), Granov Russian Research Center for Radiology and Surgical Technologies, Saint Petersburg University

俄罗斯联邦, Saint Petersburg

参考

  1. Kumar V, Abbas A, Fausto N, Aster J. Robbins and Cotran pathologic basis of disease. Ed. 8. Philadelphia, 2010; p. 262–70.
  2. Heppner GH. Tumor heterogeneity. Cancer Res 1984; 44: 2259–65.
  3. Hope K, Bhatia M. Clonal interrogation of stem cells. Nat Methods 2011; 8 (Suppl. 4): S36–S40.
  4. Vitale I, Galluzzi L, Senovilla L et al. Illicit survival of cancer cells during polyploidization and depolyploidization. Cell Death Differ 2011; 18 (9): 1403–13.
  5. Illidge TM, Cragg MS, Fringes B et al. Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int 2000; 24 (9): 621–33.
  6. Erenpreisa JA, Cragg MS, Fringes B et al. Release of mitotic descendants by giant cells from irradiated Burkitt’s lymphoma cell line. Cell Biol Int 2000; 24 (9): 635–48.
  7. Sundaram M, Guernsey DL, Rajaraman MM, Rajaraman R. Neosis: a novel type of cell division in cancer. Cancer Biol Ther 2004; 3 (2): 207–18.
  8. Weihua Z, Lin Q, Ramoth AJ et al. Formation of solid tumors by a single multinucleated cancer cell. Cancer 2011; 117 (17): 4092–9.
  9. Niu N, Zhang J, Zhang N et al. Linking genomic reorganization to tumor initiation via the giant cell cycle. Oncogenesis 2016; 5 (12): e281.
  10. Zhang S, Mercado-Uribe I, Hanash S, Liu J. iTRAQ-based proteomic analysis of polyploid giant cancer cells and budding progeny cells reveals several distinct pathways for ovarian cancer development. PLoS One 2013; 8 (11): e80120.
  11. Zhang S, Mercado-Uribe I, Xing Z et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 2014; 33 (1): 116–28.
  12. Fei F, Zhang D, Yang Z et al. The number of polyploid giant cancer cells and epithelial-mesenchymal transition-related proteins are associated with invasion and metastasis in human breast cancer. J Exp Clin Cancer Res 2015; 34: 158–71.
  13. Erenpreisa J, Cragg MS. Three steps to the immortality of cancer cells: senescence, polyploidy and self-renewal. Cancer Cell Int 2013: 13 (1): 92–104.
  14. Liu J. The dualistic origin of human tumors. Semin Cancer Biol 2018; 53: 31–41.
  15. Chen J, Niu N, Zhang J et al. Polyploid giant cancer cells (PGCCs): the evil roots of cancer. Curr Cancer Drug Targets 2019; 19 (5), 360–7.
  16. Вартанян Н.Л. Роль гигантских полиплоидных клеток в развитии опухоли. Клет. культ. инф. бюлл. 2018: 34: 46–61.
  17. [Vartanyan N.L. Rol gigantskih poliploidnyh kletok v razvitii opuholi. Klet. kult. inf. bull. 2018; 34: 46–61 (in Russian).]
  18. Amend SR, Torga G, Lin KC et al. Polyploid giant cancer cells: unrecognized actuators of tumorigenesis, metastasis, and resistance. Prostate 2019; 79 (13): 1489–97.
  19. Polyak K. Heterogeneity in breast cancer. J Clin Invest 2011: 121 (10): 3786–8.
  20. Zhang L, Ding P, Lv H et al. Number of polyploid giant cancer cells and expression of EZH2 are associated with VM formation and tumor grade in human ovarian tumor. Biomed Res Int 2014; 6: 903542.
  21. Zhang S, Zhang D, Yang Z, Zhang X. Tumor budding, micropapillary pattern, and polyploidy giant cancer cells in colorectal cancer: current status and future prospects. Stem Cells Int 2016; 3: 1–8.
  22. Lv H, Shi Y, Zhang L et al. Polyploid giant cancer cells with budding and the expression of cyclin E, S-phase kinase-associated protein 2, stathmin associated with the grading and metastasis in serous ovarian tumor. BMC Cancer 2014; 14 (1): 576–85.
  23. Qu Y, Zhang L, Rong Z et al. Number of glioma polyploid giant cancer cells (PGCCs) associated with vasculogenic mimicry formation and tumor grade in human glioma. J Exp Clin Cancer Res 2013; 32 (1): 75–82.
  24. Rohnalter V, Roth K, Finkernagel F et al. A multi-stage process including transient poly-ploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget 2015; 6 (37): 40005–25.
  25. Zhang D, Yang X, Yang Z et al. Daughter cells and erythroid cells budding from PGCCs and their clinicopathological significances in colorectal cancer. J Cancer 2017; 8 (3): 469–78.
  26. Wang Y, Wang Y, Zheng W. Cytologic changes of ovarian epithelial cancer induced by ¬neoadjuvant chemotherapy. Int J Clin Exp Pathol 2013; 6 (10): 2121–28.
  27. Yadav AS, Pandey PR, Butti R et al. The biology and therapeutic implications of tumor dormancy and reactivation. Front Oncol 2018; 8: 72.
  28. Imai T. Growth patterns in human carcinoma. Their classification and relation to prognosis. Obstet Gynecol 1960; 16: 296–308.
  29. Kanazawa H, Mitomi H, Nishiyama Y et al. Tumour budding at invasive margins and ¬outcome in colorectal cancer. Colorectal Dis 2008; 10 (1): 41–7.
  30. Nakamura T, Mitomi H, Kanazawa H et al. Tumor budding as an index to identify high-risk patients with stage II colon cancer. Dis Colon Rectum 2008; 51 (5): 568–72.
  31. Gonzalez-Guerrero M, Martinez-Camblor P, Vivanco B et al. The adverse prognostic effect of tumor budding on the evolution of cutaneous head and neck squamous cell carcinoma. J Am Acad Dermatol 2017; 76 (6): 1139–45.
  32. Karayannopoulou G, Euvrard S, Kanitakis J. Tumour budding correlates with aggressiveness of cutaneous squamous-cell carcinoma. Anticancer Res 2016; 36 (9): 4781–5.
  33. Lang-Schwarz C, Melcher B, Haumaier F et al. Budding and tumor-infiltrating lympho- cytes – combination of both parameters predicts survival in colorectal cancer and leads to new prognostic subgroups. Hum Pathol 2018; 79: 160–7.
  34. Puck TT, Marcus PI. Action of x-rays on mammalian cells. J Exp Med 1956; 103 (5): 653–66.
  35. Kaur E, Rajendra J, Jadhav S et al. Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence. Carcinogenesis 2015; 36 (6): 685–95.
  36. Mirzayans R, Andrais B, Scott A et al. Multinucleated giant cancer cells produced in response to ionizing radiation retain viability and replicate their genome. Int J Mol Sci 2017; 18 (2): 360.
  37. Mirzayans R, Andrais B, Murray D. Impact of premature senescence on radiosensitivity measured by high throughput cell-based assays. Int J Mol Sci 2017; 18 (7): 1460.
  38. Puig PE, Guilly MN, Bouchot A et al. Tumor cells can escape DNA-damaging cisplatin ¬through DNA endoreduplication and reversible polyploidy. Cell Biol Int 2008; 32 (9): 1031–43.
  39. Mirzayans R, Andrais B, Murray D. Do multiwell plate high throughput assays measure loss of cell viability following exposure to genotoxic agents? Int J Mol Sci 2017; 18 (8): 1679.
  40. Sliwinska MA, Mosieniak G, Wolanin K et al. Induction of senescence with doxorubicin ¬leads to increased genomic instability of HCT116 cells. Mech Ageing Dev 2009; 130 (1–2): 24–32.
  41. Mosieniak G, Sliwinska MA, Alster O et al. Polyploidy formation in doxorubicin-treated cancer cells can favor escape from senescence. Neoplasia 2015; 17 (12): 882–93.
  42. Was H, Czarnecka J, Kominek A et al. Some chemotherapeutics-treated colon cancer cells display a specific phenotype being a combination of stem-like and senescent cell features. Cancer Biol Ther 2018; 19 (1): 63–75.
  43. Zhang S, Mercado-Uribe I, Liu J. Tumor stroma and differentiated cancer cells can be originated directly from polyploid giant cancer cells induced by paclitaxel. Int J Cancer 2014; 134 (3): 508–18.
  44. Niu N, Mercado-Uribe I, Liu J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene 2017; 36 (34): 4887–900.
  45. Ogden A, Rida PC, Knudsen BS et al. Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse. Cancer Lett 2015; 367 (2): 89–92.
  46. Was H, Czarnecka J, Kominek A et al. Some chemotherapeutics-treated colon cancer cells display a specific phenotype being a combination of stem-like and senescent cell features. Cancer Biol Ther 2018; 19 (1): 63–75.
  47. Киселева Л.Н., Карташев А.В., Вартанян Н.Л. и др. Действие фотемустина на клетки линий глиобластом человека. Цитология. 2018; 60 (1): 21–9.
  48. [Kiseleva L.N., Kartashev A.V., Vartanyan N.L. et al. Deistvie fotemustina na kletki linii glioblastom cheloveka. Tsitologiia. 2018; 60 (1): 21–9 (in Russian).]
  49. Sirois I, Aguilar-Mahecha A, Lafleur J et al. A unique morphological phenotype in chemo-resistant triple-negative breast cancer reveals metabolic reprogramming and PLIN4 expression as a molecular vulnerability. Mol Cancer Res 2019; 17 (12): 2492–507.
  50. Киселева Л.Н., Карташев А.В., Вартанян Н.Л. и др. Резистентные к действию генотоксических факторов многоядерные клетки в культивируемых линиях глиобластом человека. Цитология. 2018; 60 (8): 616–22.
  51. [Kiseleva L.N., Kartashev A.V., Vartanyan N.L. et al. Rezistentnye k deistviiu genotoksi-cheskikh faktorov mnogoiadernye kletki v kul’tiviruemykh liniiakh glioblastom cheloveka. Tsitologiia. 2018; 60 (8): 616–22 (in Russian).]
  52. Kaur E, Goda JS, Ghorai A et al. Molecular features unique to glioblastoma radiation resistant residual cells may affect patient outcome – a short report. Cell Oncol (Dordr) 2019; 42 (1): 107–16.
  53. Mirzayans R, Andrais B, Murray D. Viability assessment following anticancer treatment requires single-cell visualization. Cancers (Basel) 2018; 10 (8): 255.
  54. Mirzayans R, Murray D. Intratumor heterogeneity and therapy resistance: contributions of dormancy, apoptosis reversal (anastasis) and cell fusion to disease recurrence. Int J Mol Sci 2020; 21 (4): 1308.
  55. Fei F, Zhang M, Li B et al. Formation of polyploid giant cancer cells involves in the prognostic value of neoadjuvant chemoradiation in locally advanced rectal cancer. J Oncol 2019; ID 2316436.
  56. Leclerc J, Garandeau D, Pandiani C et al. Lysosomal acid ceramidase ASAH1 controls the transition between invasive and proliferative phenotype in melanoma cells. Oncogene 2019; 38 (8): 1282–95.
  57. Camacho L, Meca-Cortes O, Abad JL et al. Acid ceramidase as a therapeutic target in ¬metastatic prostate cancer. J Lipid Res 2013; 54 (5): 1207–20.
  58. Nguyen HS, Shabani S, Awad AJ et al. Molecular markers of therapy-resistant glioblas- toma and potential strategy to combat resistance. Int J Mol Sci 2018; 19 (6): 1765.
  59. Bai A, Mao C, Jenkins RW et al. Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase. PloS One 2017; 12 (6): e0177805.
  60. White-Gilbertson S, Lu P, Norris JS, Voelkel-Johnson C. Genetic and pharmacological inhibition of acid ceramidase prevents asymmetric cell division by neosis. J Lipid Res 2019; 60 (7): 1225–35.
  61. Cheng JC, Bai A, Beckham TH et al. Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J Clin Invest 2013; 123 (10): 4344–58.
  62. Dementiev A, Joachimiak A, Nguyen H et al. Molecular mechanism of inhibition of acid ceramidase by carmofur. J Med Chem 2019; 62 (2): 987–92.
  63. Morad SA, Levin JC, Tan SF et al. Novel off-target effect of tamoxifen-inhibition of acid ceramidase activity in cancer cells. Biochim Biophys Acta 2013; 1831 (12): 1657–64.
  64. White-Gilbertson S, Lu P, Jones CM et al. Tamoxifen is a candidate first-in-class inhibitor of acid ceramidase that reduces amitotic division in polyploid giant cancer cells-unrecognized players in tumorigenesis. Cancer Med 2020; 3.
  65. Eliyahu E, Shtraizent N, Shalgi R, Schuchman EH. Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility. Cell Physiol Biochem 2012; 30 (3): 735–48.
  66. Kapperman HE, Goyeneche AA, Telleria CM. Mifepristone inhibits non-small cell lung carcinoma cellular escape from DNA damaging cisplatin. Cancer Cell Int 2018; 18 (1): 185.

版权所有 © Consilium Medicum, 2020

Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。
 


##common.cookie##