Venous thrombosis during systemic antitumor therapy: risks, prognosis, treatment

封面

如何引用文章

全文:

详细

Venous thromboembolic events (VTE and ТЕ) in cancer are a complex and multicomponent process involving various non-modifiable and modifiable factors that increase or reduce the risk of abnormal thrombus formation. The paradigm of prevention and treatment of VTE in cancer patients has significantly changed with the introduction of new oral anticoagulants; however, the choice of a particular agent remains challenging for practitioners. This review aims to address the VTE development mechanisms in cancer patients, compare different scales in predicting VTE occurrence, and compare the effectiveness and tolerability of anticoagulant therapy in various clinical situations.

作者简介

Mikhail Fedyanin

Pirogov National Medical and Surgical Center; Moscow Multidisciplinary Clinical Center “Kommunarka”; Blokhin National Medical Research Center of Oncology

编辑信件的主要联系方式.
Email: fedianinmu@mail.ru
ORCID iD: 0000-0001-5615-7806
SPIN 代码: 4381-5628

D. Sci. (Med.)

俄罗斯联邦, Moscow; Moscow; Moscow

Alexey Rumyantsev

Blokhin National Medical Research Center of Oncology

Email: fedianinmu@mail.ru
ORCID iD: 0000-0003-4443-9974

Cand. Sci. (Med.)

俄罗斯联邦, Moscow

Alexey Tryakin

Blokhin National Medical Research Center of Oncology

Email: fedianinmu@mail.ru
ORCID iD: 0000-0003-2245-214X

Cand. Sci. (Med.)

俄罗斯联邦, Moscow

参考

  1. Trousseau A. Phlegmasia alba dolens. In: Lectures on Clinical Medicine, delivered at the Hôtel-Dieu, Paris. London: New Sydenham Society, 1872.
  2. Dickson BC. Venous thrombosis: On the history of Virchow’s triad. Univ Tor Med J. 2004;81:166-71.
  3. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327-87. doi: 10.1152/physrev.00047.2009
  4. Khorana AA, Francis CW, Culakova E, et al. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer. 2007;110(10):2339-46. doi: 10.1002/cncr.23062
  5. White C, Noble SIR, Watson M, et al. Prevalence, symptom burden, and natural history of deep vein thrombosis in people with advanced cancer in specialist palliative care units (HIDDen): A prospective longitudinal observational study. Lancet Haematol. 2019;6(2): e79-e88. doi: 10.1016/S2352-3026(18)30215-1
  6. Khorana AA, Kuderer NM, Culakova E, et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008;111(10):4902-7. doi: 10.1182/blood-2007-10-116327
  7. Warny M, Helby J, Birgens HS, et al. Arterial and venous thrombosis by high platelet count and high hematocrit: 108 521 individuals from the Copenhagen General Population Study. J Thromb Haemost. 2019;17(11):1898-911. doi: 10.1111/jth.14574
  8. Wahrenbrock M, Borsig L, Le D, et al. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J Clin Invest. 2003;112(6):853-62. doi: 10.1172/JCI18882
  9. Lee EC, Cameron SJ. Cancer and thrombotic risk: The platelet paradigm. Front Cardiovasc Med. 2017;4:67. doi: 10.3389/fcvm.2017.00067
  10. Stender MT, Frøkjaer JB, Larsen TB, et al. Preoperative plasma D-dimer is a predictor of postoperative deep venous thrombosis in colorectal cancer patients. Dis Colon Rectum. 2009;52(3):446-51. doi: 10.1007/DCR.0b013e318197e2b2
  11. Ay C, Vormittag R, Dunkler D, et al. D-dimer and prothrombin fragment 1+2 predict venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol. 2009;27(25):4124-9. doi: 10.1200/JCO.2008.21.7752
  12. Hamza MS, Mousa SA. Cancer-Associated Thrombosis: Risk Factors, Molecular Mechanisms, Future Management. Clin Appl Thromb Hemost. 2020;26:1076029620954282. doi: 10.1177/1076029620954282
  13. Davis PJ, Mousa SA, Schechter GP, et al. ATP, thyroid hormone receptor on integrin αvβ3 and cancer metastasis. Horm Cancer. 2020;11(1):13-6. doi: 10.1007/s12672-019-00371-4
  14. Blom JW, Vanderschoot JP, Oostindiër MJ, et al. Incidence of venous thrombosis in a large cohort of 66 329 cancer patients: Results of a record linkage study. J Thromb Haemost. 2006;4(3):529-35. doi: 10.1111/j.1538-7836.2006.01804.x
  15. Canonico M, Plu-Bureau G, Lowe GD, Scarabin PY. Hormone replacement therapy and risk of venous thromboembolism in postmenopausal women: Systematic review and meta-nalysis. BMJ. 2008;336(7655):1227-31. doi: 10.1136/bmj.39555.441944.BE
  16. Caine YG, Bauer KA, Barzegar S, et al. Coagulation activation following estrogen administration to postmenopausal women. Thromb Haemost. 1992;68(4):392-5. PMID: 1333098
  17. Rott H. Contraception, venous thrombosis and biological plausability. Minerva Med. 2013;104(2):161-7. PMID: 23514992
  18. Nealen ML, Vijayan KV, Bolton E, Bray PF. Human platelets contain a glycosylated estrogen receptor. Circ Res. 2001;88(4):438-42. doi: 10.1161/01.res.88.4.438
  19. Dupuis M, Severin S, Noirrit-Esclassan E, et al. Effects of estrogens on platelets and megakaryocytes. Int J Mol Sci. 2019;20(12):3111. doi: 10.3390/ijms20123111
  20. Levi M, Middeldorp S, Büller HR. Oral contraceptives and hormonal replacement therapy cause an imbalance in coagulation and fibrinolysis which may explain the increased risk of venous thromboembolism. Cardiovasc Res. 1999;41(1):21-4. doi: 10.1016/s0008-6363(98)00210-7
  21. Khorana AA, Connolly GC. Assessing risk of venous thromboembolism in the patient with cancer. J Clin Oncol. 2009;27(29):4839-47. doi: 10.1200/JCO.2009.22.3271
  22. Esmon CT. The protein C pathway. Chest. 2003;124(3 Suppl.):26S-32S. doi: 10.1378/chest.124.3_suppl.26s
  23. Chew HK, Wun T, Harvey D, et al. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med. 2006;166(4):458-64. doi: 10.1001/archinte.166.4.458
  24. Noble S. The challenges of managing cancer related venous thromboembolism in the palliative care setting. Postgrad Med J. 2007;83(985):671-4. doi: 10.1136/pgmj.2007.061622
  25. Otani K, Ishihara S, Hata K, et al. Colorectal cancer with venous tumor thrombosis. Asian J Surg. 2018;41(3):197-202. doi: 10.1016/j.asjsur.2016.07.013
  26. Nakase H, Kawanami C, Itoh T, et al. Diffuse colon cancer with tumor thrombus in the portal vein. Gastrointest Endosc. 2002;55(2):239-40. doi: 10.1067/mge.2001.118963
  27. Chew HK, Davies AM, Wun T, et al. The incidence of venous thromboembolism among patients with primary lung cancer. J Thromb Haemost. 2008;6(4):601-8. doi: 10.1111/j.1538-7836.2008.02908.x
  28. Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA. 2005;293(6):715-22. doi: 10.1001/jama.293.6.715
  29. Ma Z, Zhang, T, Wang, R, et al. Tissue factor-factor VIIa complex induces epithelial ovarian cancer cell invasion and metastasis through a monocytes-dependent mechanism. Int J Gynecol Cancer. 2011;21(4):616-24. doi: 10.1097/IGC.0b013e3182150e98
  30. Rak J, Yu JL, Luyendyk J, Mackman N. Oncogenes, Trousseau syndrome, and cancer-related changes in the coagulome of mice and humans. Cancer Res. 2006;66(22):10643-6. doi: 10.1158/0008-5472.CAN-06-2350
  31. Ades S, Kumar S, Alam M, et al. Tumor oncogene (KRAS) status and risk of venous thrombosis in patients with metastatic colorectal cancer. J Thromb Haemost. 2015;13(6):998-1003. doi: 10.1111/jth.12910
  32. Rak J, Klement G. Impact of oncogenes and tumour suppressor genes on deregulation of haemostasis and angiogenesis in cancer. Cancer Metastasis Rev. 2000;19(1-2):93-6. doi: 10.1023/a:1026516920119
  33. López-Ocejo O, Viloria-Petit A, Bequet-Romero M, et al. Oncogenes and tumor angiogenesis: The HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene. 2000;19(40):4611-20. doi: 10.1038/sj.onc.1203817
  34. Nadir Y, Brenner B, Zetser A, et al. Heparanase nduces tissue factor expression in vascular endothelial and cancer cells. J Thromb Haemost. 2006;4(11):2443-51. doi: 10.1111/j.1538-7836.2006.02212.x
  35. Nasser NJ, Sarig G, Brenner B, et al. Heparanase neutralizes the anticoagulation properties of heparin and low-molecular-weight heparin. J Thromb Haemost. 2006;4(3):560-5. doi: 10.1111/j.1538-7836.2006.01792.x
  36. Nasser NJ, Na’amad M, Weinberg I, Gabizon AA. Pharmacokinetics of low molecular weight heparin in patients with malignant tumors. Anticancer Drugs. 2015;26(1):106-11. doi: 10.1097/CAD.0000000000000176
  37. Fisher B, Costantino J, Redmond C, et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N Engl J Med. 1989;320(8):479-84. doi: 10.1056/NEJM198902233200802
  38. Fisher B, Dignam J, Wolmark N, et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst. 1997;89(22):1673-82. doi: 10.1093/jnci/89.22.1673
  39. Watson NW, Wander SA, Shatzel JJ, Al-Samkari H. Venous and arterial thrombosis associated with abemaciclib therapy for metastatic breast cancer. Cancer. 2022;128(17):3224-32. doi: 10.1002/cncr.34367
  40. Heit JA, Silverstein MD, Mohr DN, et al. Risk factors for deep vein thrombosis and pulmonary embolism. Arch Intern Med. 2000;160(6):809-15. doi: 10.1001/archinte.160.6.809
  41. Cool RM, Herrington JD, Wong L. Recurrent peripheral arterial thrombosis induced by cisplatin and etoposide. Pharmacotherapy. 2002;22(9):1200-4. doi: 10.1592/phco.22.13.1200.33524
  42. Lyman GH, Khorana AA, Falanga A, et al. American Society of Clinical Oncology guideline: Recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol. 2007;25(34):5490-505. doi: 10.1200/JCO.2007.14.1283
  43. Abdel-Razeq H, Mansour A, Abdulelah H, et al. Thromboembolic events in cancer patients on active treatment with cisplatin-based chemotherapy: Another look! Thromb J. 2018;16:2. doi: 10.1186/s12959-018-0161-9
  44. Khorana AA, Dalal M, Lin J, Connolly GC. Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States. Cancer. 2013;119(3):648-55. doi: 10.1002/cncr.27772
  45. Moore RA, Adel N, Riedel E, et al. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: A large retrospective analysis. J Clin Oncol. 2011;29(25):3466-73. doi: 10.1200/JCO.2011.35.5669
  46. Seng S, Liu Z, Chiu SK, et al. Risk of venous thromboembolism in patients with cancer treated with Cisplatin: A systematic review and meta-analysis. J Clin Oncol. 2012;30(35):4416-26. doi: 10.1200/JCO.2012.42.4358
  47. Starling N, Rao S, Cunningham D, et al. Thromboembolism in patients with advanced gastroesophageal cancer treated withanthracycline, platinum, and fluoropyrimidine combination chemotherapy: A report from the UK National Cancer Research Institute Upper Gastrointestinal Clinical Studies Group. J Clin Oncol. 2009;27(23):3786-93. doi: 10.1200/JCO.2008.19.4274
  48. Lauritsen J, Hansen MK, Bandak M, et al. Cardiovascular risk factors and disease after male germ cell cancer. J Clin Oncol. 2020;38(6):584-92. doi: 10.1200/JCO.19.01180
  49. Anderson KC. Lenalidomide and thalidomide: Mechanisms of action-similarities and differences. Semin Hematol. 2005;42(4 Suppl. 4): S3-8. doi: 10.1053/j.seminhematol.2005.10.001
  50. Rajkumar SV, Blood E, Vesole D, et al. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: A clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 2006;24(3):431-6. doi: 10.1200/JCO.2005.03.0221
  51. Gugliotta L, Mazzucconi MG, Leone G, et al. Incidence of thrombotic complications in adult patients with acute lymphoblastic leukaemia receiving L-asparaginase during induction therapy: A retrospective study. Eur J Haematol. 1992;49(2):63-6. doi: 10.1111/j.1600-0609.1992.tb00032.x
  52. Caruso V, Iacoviello L, Di Castelnuovo A, et al. Thrombotic complications in childhood acute lymphoblastic leukemia: A meta-analysis of 17 prospective studies comprising 1752 pediatric patients. Blood. 2006;108(7):2216-22. doi: 10.1182/blood-2006-04-015511
  53. Qureshi A, Mitchell C, Richards S, et al. Asparaginase-related venous thrombosis in UKALL 2003-re-exposure to asparaginase is feasible and safe. Br J Haematol. 2010;149(3):410-3. doi: 10.1111/j.1365-2141.2010.08132.x
  54. Jänne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372(18):1689-99. doi: 10.1056/NEJMoa1411817
  55. Cabanillas ME, Schlumberger M, Jarzab B, et al. A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: A clinical outcomes and biomarker assessment. Cancer. 2015;121(16):2749-56. doi: 10.1002/cncr.29395
  56. Shiroyama T, Hayama M, Satoh S, et al. Successful retreatment with osimertinib after osimertinib-induced acute pulmonary embolism in a patient with lung adenocarcinoma: A case report. Respir Med Case Rep. 2016;20:25-7. doi: 10.1016/j.rmcr.2016.11.009
  57. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335-42. doi: 10.1056/NEJMoa032691
  58. Scappaticci FA, Skillings JR, Holden SN, et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst. 2007;99(16):1232-9. doi: 10.1093/jnci/djm086
  59. Ranpura V, Hapani S, Chuang J, Wu S. Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: A meta-analysis of randomized controlled trials. Acta Oncol. 2010;49(3):287-97. doi: 10.3109/02841860903524396
  60. Alahmari AK, Almalki ZS, Alahmari AK, Guo JJ. Thromboembolic events associated with bevacizumab plus chemotherapy for patients with colorectal cancer: A meta-analysis of randomized controlled trials. Am Health Drug Benefits. 2016;9(4):221-32. PMID: 27688834
  61. Spratlin, JL, Mulder KE, Mackey JR. Ramucirumab (IMC-1121B): A novel attack on angiogenesis. Future Oncol. 2010;6(7):1085-94. doi: 10.2217/fon.10.75
  62. Tabernero J, Yoshino T, Cohn AL, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): A randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 2015;16(5):499-508. doi: 10.1016/S1470-2045(15)70127-0
  63. Guy JB, Bertoletti L, Magné N, et al. Venous thromboembolism in radiation therapy cancer patients: Findings from the RIETE registry. Crit Rev Oncol Hematol. 2017;113:83-9. doi: 10.1016/j.critrevonc.2017.03.006
  64. Byrne M, Reynolds JV, O’Donnell JS, et al. Long-term activation of the pro-coagulant response after neoadjuvant chemoradiation and major cancer surgery. Br J Cancer. 2010;102(1):73-9. doi: 10.1038/sj.bjc.6605463
  65. Boerma M, Kruse JJ, van Loenen M, et al. increased deposition of von willebrand factor in the rat heart after local ionizing irradiation. Strahlenther Onkol. 2004;180(2):109-16. doi: 10.1007/s00066-004-1138-0
  66. Ellis ML, Okano S, McCann A, et al. Catheter-related thrombosis incidence and risk factors in adult cancer patients with central venous access devices. Intern Med J. 2020;50(12):1475-82. doi: 10.1111/imj.14780
  67. Fankhauser CD, Tran B, Pedregal M, et al. Risk-benefit analysis of prophylactic anticoagulation for patients with metastatic germ cell tumours undergoing first-line chemotherapy. Eur Urol Focus. 2021;7(5):1130-6. doi: 10.1016/j.euf.2020.09.017
  68. Chopra V, Anand S, Hickner A, et al. Risk of venous thromboembolism associated with peripherally inserted central catheters: A systematic review and meta-analysis. Lancet. 2013;382(9889):311-25. doi: 10.1016/S0140-6736(13)60592-9
  69. Xu XR, Zhang D, Oswald BE, et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci. 2016;53(6):409-30. doi: 10.1080/10408363.2016.1200008
  70. De Candia E. Mechanisms of platelet activation by thrombin: A short history. Thromb Res. 2012;129(3):250-6. doi: 10.1016/j.thromres.2011.11.001
  71. Menter DG, Tucker SC, Kopetz S, et al. Platelets and cancer: A casual or causal relationship: Revisited. Cancer Metastasis Rev. 2014;33(1):231-69. doi: 10.1007/s10555-014-9498-0
  72. Mege D, Panicot-Dubois L, Dubois C. Mechanisms of cancer-associated thrombosis. Hemasphere. 2019;3(Suppl.):19-21. doi: 10.1097/HS9.0000000000000239
  73. Mukai M, Oka T. Mechanism and management of cancer-associated thrombosis. J Cardiol. 2018;72(2):89-93. doi: 10.1016/j.jjcc.2018.02.011
  74. Taubman MB. Tissue factor in cancer angiogenesis and coagulopathy. In: Khorana AA, Francis CW, Eds. Cancer-Associated Thrombosis: New Findings in Translational Science, Prevention, and Treatment. New York: Informa Healthcare, 2007.
  75. Peshkova AD, Le Minh G, Tutwiler V, et al. Activated monocytes enhance platelet-driven contraction of blood clots via tissue factor expression. Sci Rep. 2017;7(1):5149. doi: 10.1038/s41598-017-05601-9
  76. Abdol Razak NB, Jones G, Bhandari M, et al. Cancer-associated thrombosis: An overview of mechanisms, risk factors, and treatment. Cancers (Basel). 2018;10(10):380. doi: 10.3390/cancers10100380
  77. Zwicker JI, Liebman HA, Neuberg D, et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009;15(22):6830-40. doi: 10.1158/1078-0432.CCR-09-0371
  78. Hillen HF. Thrombosis in cancer patients. Ann Oncol. 2000;11(Suppl. 3):273-6.doi: 10.1093/annonc/11.suppl_3.273
  79. Dosquet C, Weill D, Wautier JL. Cytokines and thrombosis. J Cardiovasc Pharmacol. 1995;25(Suppl. 2): S13-9. doi: 10.1097/00005344-199500252-00004
  80. Puhlmann M, Weinreich DM, Farma JM, et al. Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity. J Transl Med. 2005;3:37. doi: 10.1186/1479-5876-3–37
  81. Zucchella M, Pacchiarini L, Meloni F, et al. Effect of interferon alpha, interferon gamma and tumor necrosis factor on the procoagulant activity of human cancer cells. Haematologica. 1993;78(5):282-6. PMID: 8314156
  82. Grignani G, Maiolo A. Cytokines and hemostasis. Haematologica. 2000;85(9):967-72. PMID: 10980636
  83. Thålin C, Hisada Y, Lundström S, et al. Neutrophil extracellular traps. Arterioscler Thromb Vasc Biol. 2019;39(9):1724-38. doi: 10.1161/ATVBAHA.119.312463
  84. Von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819-35. doi: 10.1084/jem.20112322
  85. Lam FW, Cruz MA, Parikh K, Rumbaut RE. Histones stimulate von Willebrand factor release in vitro and in vivo. Haematologica. 2016;101(7):e277-9. doi: 10.3324/haematol.2015.140632
  86. Mauracher LM, Posch F, Martinod K, et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost. 2018;16(3):508-18. doi: 10.1111/jth.13951
  87. Agnelli G, Gussoni G, Bianchini C, et al. Nadroparin for the prevention of thromboembolic events in ambulatory patients with metastatic or locally advanced solid cancer receiving chemotherapy: A randomised, placebo-controlled, double blind study. Lancet Oncol. 2009;10(10):943-9. doi: 10.1016/S1470-2045(09)70232-3
  88. Agnelli G, George DJ, Kakkar AK, et al. Semuloparin for thromboprophylaxis in patients receiving chemotherapy for cancer. N Engl J Med. 2012;366(7):601-9. doi: 10.1056/NEJMoa1108898
  89. Ay C, Dunkler D, Marosi C, et al. Prediction of venous thromboembolism in cancer patients. Blood. 2010;116(24):5377-82. doi: 10.1182/blood-2010-02-270116
  90. Roselli M, Riondino S, Mariotti S, et al. Clinical models and biochemical predictors of VTE in lung cancer. Cancer Metastasis Rev. 2014;33(2-3):771-89. doi: 10.1007/s10555-014-9500-x
  91. Mansfield AS, Tafur AJ, Wang CE, et al. Predictors of active cancer thromboembolic outcomes: Validation of the Khorana score among patients with lung cancer. J Thromb Haemost. 2016;14(9):1773-8. doi: 10.1111/jth.13378
  92. Connolly GC, Francis CW. Cancer-associated thrombosis. Hematol. Am. Soc. Hematol. Educ. Program. 2013, 684-691.
  93. van Es N, Di Nisio M, Cesarman G, et al. Comparison of risk prediction scores for venous thromboembolism in cancer patients: A prospective cohort study. Haematologica. 2017;102(9):1494-1501. doi: 10.3324/haematol.2017.169060
  94. Verso M, Agnelli G, Barni S, et al. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: The PROTECHT score. Intern Emerg Med. 2012;7(3):291-2. doi: 10.1007/s11739-012-0784-y
  95. Alexander M, Burbury K. A systematic review of biomarkers for the prediction of thromboembolism in lung cancer – Results, practical issues and proposed strategies for future risk prediction models. Thromb Res. 2016;148:63-9. doi: 10.1016/j.thromres.2016.10.020
  96. van Es N, Franke VF, Middeldorp S, et al. The Khorana score for the prediction of venous thromboembolism in patients with pancreatic cancer. Thromb Res. 2017;150:30-2. doi: 10.1016/j.thromres.2016.12.013
  97. Riondino S, Ferroni P, Zanzotto FM, et al. Predicting VTE in cancer patients: Candidate biomarkers and risk assessment models. Cancers (Basel). 2019;11(1):95.doi: 10.3390/cancers11010095
  98. Li A, La J, May SB, et al. Derivation and validation of a clinical risk assessment model for cancer-associated thrombosis in two unique US health care systems. J Clin Oncol. 2023;41(16):2926-38. doi: 10.1200/JCO.22.01542
  99. Muñoz A, Ay C, Grilz E, et al. A clinical-genetic risk score for predicting cancer-associated venous thromboembolism: A development and validation study involving two independent prospective cohorts. J Clin Oncol. 2023;41(16):2911-25. doi: 10.1200/JCO.22.00255
  100. Muñoz Martín AJ, Ortega I, Font C, et al. Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer. Br J Cancer. 2018;118(8):1056-61. doi: 10.1038/s41416-018-0027-8
  101. Soria JM, Morange PE, Vila J, et al. Multilocus genetic risk scores for venous thromboembolism risk assessment. J Am Heart Assoc. 2014;3(5):e001060. doi: 10.1161/JAHA.114.001060
  102. Pabinger I, Ay C, Dunkler D, et al. Factor V Leiden mutation increases the risk for venous thromboembolism in cancer patients – Results from the Vienna Cancer and Thrombosis Study (CATS). J Thromb Haemost. 2015;13(1):17-22. doi: 10.1111/jth.12778
  103. Guman NAM, van Geffen RJ, Mulder FI, et al. Evaluation of the Khorana, PROTECHT, and 5-SNP scores for prediction of thromboembolism in patients with cancer. J Thromb Haemost. 2021;19(12):2974-83. doi: 10.1111/jth.15503
  104. Kirkilesis GI, Kakkos SK, Tsolakis IA. Editor’s choice – A systematic review and meta-analysis of the efficacy and safety of anticoagulation in the treatment of venous thromboembolism in patients with cancer. Eur J Vasc Endovasc Surg. 2019;57(5):685-701. doi: 10.1016/j.ejvs.2018.11.004
  105. Lee AYY. Anticoagulant therapy for venous thromboembolism in cancer. N Engl J Med. 2020;382(17):1650-2. doi: 10.1056/NEJMe2004220
  106. McBane RD 2nd, Wysokinski WE, Le-Rademacher JG, et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: the ADAM VTE trial. J Am Heart Assoc. 2024;13(3):e031880. doi: 10.1161/JAHA.123.031880
  107. Riaz IB, Harry EF, Naqvi SAA, et al. Direct oral anticoagulants compared with dalteparin for treatment of cancer-associated thrombosis: A living, interactive systematic review and network meta-analysis. Mayo Clin Proc. 2022;97(2):308-24. doi: 10.1016/j.mayocp.2020.10.041
  108. Hakeam HA, Al-Sanea N. Effect of major gastrointestinal tract surgery on the absorption and efficacy of direct acting oral anticoagulants (DOACs). J Thromb Thrombolysis. 2017;43(3):343-51. doi: 10.1007/s11239-016-1465-x
  109. Byon W, Nepal S, Schuster AE, et al. Regional gastrointestinal absorption of apixaban in healthy subjects. J Clin Pharmacol. 2018;58(7):965-71. doi: 10.1002/jcph.1097
  110. Cohen AT, Hill NR, Luo X, et al. A systematic review of network meta-analyses among patients with nonvalvular atrial fibrillation: A comparison of efficacy and safety following treatment with direct oral anticoagulants. Int J Cardiol. 2018;269:174-81. doi: 10.1016/j.ijcard.2018.06.114
  111. Baker WL, Phung OJ. Systematic review and adjusted indirect comparison meta-analysis of oral anticoagulants in atrial fibrillation. Circ. Cardiovasc. Qual. Outcomes. 2012;5:711-9.
  112. Fu W, Guo H, Guo J, et al. Relative efficacy and safety of direct oral anticoagulants in patients with atrial fibrillation by network meta-analysis. J Cardiovasc Med (Hagerstown). 2014;15(12):873-9. doi: 10.2459/JCM.0000000000000206
  113. Mitchell SA, Simon TA, Raza S, et al. The efficacy and safety of oral anticoagulants in warfarin-suitable patients with nonvalvular atrial fibrillation: Systematic review and meta-analysis. Clin Appl Thromb Hemost. 2013;19(6):619-31. doi: 10.1177/1076029613486539
  114. Verdecchia P, Angeli F, Lip GY, et al. Edoxaban in the evolving scenario of non-vitamin K antagonist oral anticoagulants imputed placebo analysis and multiple treatment comparisons. PLoS One. 2014;9(6):e100478. doi: 10.1371/journal.pone.0100478
  115. Riaz IB, Harry EF, Naqvi SAA, et al. Direct oral anticoagulants compared with dalteparin for treatment of cancer-associated thrombosis: A living, interactive systematic review and network meta-analysis. Mayo Clin Proc. 2022;97(2):308-24. doi: 10.1016/j.mayocp.2020.10.041
  116. Angelini DE, Radivoyevitch T, McCrae KR, Khorana AA. Bleeding incidence and risk factors among cancer patients treated with anticoagulation. Am J Hematol. 2019;94(7):780-5. doi: 10.1002/ajh.25494
  117. Kraaijpoel N, Di Nisio M, Mulder FI, et al. Clinical impact of bleeding in cancer-associated venous thromboembolism: Results from the Hokusai VTE Cancer Study. Thromb Haemost. 2018;118(8):1439-49. doi: 10.1055/s-0038-1667001
  118. Young AM, Marshall A, Thirlwall J, et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: Results of a randomized trial (SELECT-D). J Clin Oncol. 2018;36(20):2017-23. doi: 10.1200/JCO.2018.78.8034
  119. Ageno W, Vedovati MC, Cohen A, et al. Bleeding with apixaban and dalteparin in patients with cancer-associated venous thromboembolism: Results from the Caravaggio Study. Thromb Haemost. 2021;121(5):616-24. doi: 10.1055/s-0040-1720975
  120. Cohen AT, Keshishian A, Lee T, et al. Effectiveness and safety of apixaban, LMWH, and warfarin among high-risk subgroups of VTE patients with active cancer. Curr Med Res Opin. 2021;37(9):1467-82. doi: 10.1080/03007995.2021.1932448
  121. Agnelli G, Becattini C, Meyer G, et al. Apixaban for the treatment of venous thromboembolism associated with cancer. N Engl J Med. 2020;382(17):1599-607. doi: 10.1056/NEJMoa1915103
  122. NCCN Clinical Practice Guidelines in Oncology. Available at: https://web.archive.org/web/20121109143827/http://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Accessed: 20.06.2023.
  123. National Institute for Health and Care Excellence: Guidelines. Venous thromboembolic diseases: diagnosis, management and thrombophilia testing. London: National Institute for Health and Care Excellence (NICE), 2020.
  124. Lyman GH, Carrier M, Ay C, et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021;5(4):927-74. doi: 10.1182/bloodadvances.2020003442

版权所有 © Consilium Medicum, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-相同方式共享 4.0国际许可协议的许可。
 


##common.cookie##