Влияние ретроэлементов на онкогены и онкосупрессоры в канцерогенезе

Обложка

Цитировать

Полный текст

Аннотация

Анализ данных научной литературы показал, что ретротранспозоны при активации участвуют в канцерогенезе различными путями. Во-первых, они могут кодировать собственно онкогены. Примером является белок Np9, синтезируемый эндогенным ретровирусом HERV-K. Во-вторых, ретроэлементы (РЭ) используются в качестве альтернативных промоторов протоонкогенов. Соответственно, их активация способствует усиленной экспрессии онкогенов. Примерами являются гены CSF1R, IRF5, MET, RAB3IP, CHRM3. В-третьих, транспозоны располагаются в интронах некоторых генов и при активации образуют химерные транскрипты, такие как LTR2-FABP7, LTR-ALK, LTR-ERBB4, LINE1-MET, обладающие выраженной онкогенной активностью. В-четвертых, РЭ перемещаются в гены онкосупрессоров и инактивируют их, что связано с наличием в них горячих точек инсерционного мутагенеза. Данная особенность доказана в отношении известных онкосупрессорных генов (ОСГ) APC, NF1, MSH2, PTEN, RB1, TSC2, STK11, VHL. В результате стимулируются рост опухолей и выживаемость их клеток. Важно отметить, что белковые продукты таких ОСГ, как ТР53, RB1, VHL, BRCA1, ATM, обладают способностью ингибировать активность РЭ. Соответственно, при инактивации даже одного ОСГ может срабатывать своеобразный «порочный круг», когда ослабляется контроль экспрессии РЭ. Последние в свою очередь инактивируют другие онкосупрессоры, содержащие горячие точки инсерционного мутагенеза. Этот процесс стимулирует новые пути канцерогенеза и выработку онкогенов, связанных с транспозонами. Таким образом, можно по-новому объяснить механизмы образования опухолей при наследственном опухолевом синдроме, поскольку ослабления функции онкосупрессора при герминативной гетерозиготной мутации может быть достаточно для запуска «порочного круга» с участием РЭ, онкогенов и других онкосупрессоров. Сходные механизмы вероятны для спорадического канцерогенеза. Однако инициирующим событием может стать непосредственная активация транспозонов под действием стрессоров, химических и физических канцерогенов. Помимо описанных событий активация РЭ вызывает геномную нестабильность, способствующую комплексным геномным перестройкам, часто наблюдаемым в злокачественных опухолях. Важную роль в эволюции опухолей играют также микроРНК и длинные некодирующие РНК, источниками которых являются РЭ. Их изучение перспективно для разработки таргетной терапии неоплазм.

Об авторах

Рустам Наилевич Мустафин

ФГБОУ ВО «Башкирский государственный медицинский университет» Минздрава России

Автор, ответственный за переписку.
Email: ruji79@mail.ru
ORCID iD: 0000-0002-4091-382X
SPIN-код: 4810-2535
Scopus Author ID: 56603137500
ResearcherId: S-2194-2018

канд. биол. наук, доц. каф. медицинской генетики и фундаментальной медицины

Россия, Уфа

Список литературы

  1. Re BD, Giorgi G. Long Interspersed element-1 mobility as a sensor of environmental stresses. Environ Mol Mutagen. 2020;61:465-93.
  2. Romanish MT, Cohen CJ, Mager DL. Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol. 2010;20:246-53.
  3. Lamprecht B, Walter K, Kreher S, et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med. 2010;16:571-9.
  4. Hur K, Cejas P, Feliu J, et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut. 2014;63:635-46.
  5. Babaian A, Romanish MT, Gagnier L, et al. Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma. Oncogene. 2016;35:2542-6.
  6. Dabora SL, Nieto AA, Franz D, et al. Characterisation of six large deletions in TSC2 identified using long range PCR suggests diverse mechanisms including Alu mediated recombination. J Med Genet. 2000;37:877-83.
  7. Franke G, Bausch B, Hoffmann MM, et al. Alu-Alu recombination underlies the vast majority of large VHL germline deletions: Molecular characterization and genotype-phenotype correlation in VHL patients. Hum Mutat. 2009;30:776-86.
  8. Hitchins MP, Burn J. Alu in Lynch syndrome: a danger SINE. Cancer Prev Res (Phila). 2011;4:1527-30.
  9. Wimmer K, Callens T, Wernstedt A, Messiaen L. The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion. PLoS Genet. 2011;7:e1002371.
  10. Crivelli L, Bubien V, Jones N, et al. Insertion of Alu elements at a PTEN hotspot in Cowden syndrome. Eur J Hum Genet. 2017;25:1087-91.
  11. Wang T, Zeng J, Lowe CB, et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci. 2007;104:18613-8.
  12. Cherkasova E, Malinzak E, Rao S, et al. Inactivation of the von Hippel-Lindau tumor suppressor leads to selective expression of a human endogenous retrovirus in kidney cancer. Oncogene. 2011;30:4697-706.
  13. Montoya-Durango DE, Ramos KS. Retinoblastoma famiy of proteins and chromatin epigenetics: a repetitive story in a few LINEs. Biomol Concepts. 2011;2:233-45.
  14. Mita P, Sun X, Fenyo D, et al. BRCA1 and S phase DNA repair pathways restrict LINE-1 retrptransposition in human cells. Nat Struct Mol Biol. 2020;27:179-91.
  15. Tiwari B, Jones AE, Caillet CJ, et al. P53 directly repress human LINE1 transposons. Genes Dev. 2020:34:1439-51.
  16. Weber B, Kimhi S, Howard G, et al. Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene. 2010;29:5775-84.
  17. Lock FE, Rebollo R, Miceli-Royer K, et al. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. Proc Natl Acad Sci. 2014;111:E3534-43.
  18. Cervantes-Ayalc A, Esparza-Garrido RR, Velazquez-Floes MA. Long Interspersed Nuclear Elements 1 (LINE1): The chimeric transcript L1-MET and its involvement in cancer. Cancer Genet. 2020;241:1-11.
  19. Cardelli M. The epigenetic alterations of endogenous retroelements in aging. Mech Ageing Dev. 2018;174:30-46.
  20. Sakashita A, Maezawa S, Takahashi K, et al. Endogenous retroviruses drive species-specific germline transcriptomes in mammals. Nat Struct Mol Biol. 2020;27:967-77.
  21. Sotero-Caio CG, Platt RN, Suh A, Ray DA. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol Evol. 2017;9:161-77.
  22. Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016;351:1083-7.
  23. Kelley D, Rinn J. Transposable elements reveal a stem cell specific class of long noncoding RNAs. Genome Biol. 2012;13:R107.
  24. Lu X, Sachs F, Ramsay L, et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol. 2014;21:423-5.
  25. Wang J, Xie G, Singh M, et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature. 2014;516:405-9.
  26. Izsvák Z, Wang J, Singh M, et al. Pluripotency and the endogenous retrovirus HERVH: Conflict or serendipity. BioEssays. 2016;38:109-17.
  27. Xie M, Hong C, Zhang B, et al. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat Genet. 2014;45:836-41.
  28. Anwar SL, Wulaningsih W, Lehmann U. Transposable Elements in Human Cancer: Causes and Consequences of Deregulation. Int J Mol Sci. 2017;18:974.
  29. Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet. 2020;52:306-19.
  30. Bermejo AV, Ragonnaud E, Daradoumis J, Holst P. Cancer Associated Endogenous Retroviruses: Ideal Immune Target for Adenovirus-Based Immunotherapy. Int J Mol Sci. 2020;21:4843.
  31. Jang HS, Shah NM, Du AY, et al. Transposable elements drive widespread expression of oncogenes in human cancer. Nat Genet. 2019;51:611-7.
  32. Chen T, Meng Z, Gan Y, et al. The viral oncogene Np9 acts as a critical molecular switch for co-activating beta-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia. 2013;27:1469-78.
  33. Skalka AM. Retroviral DNA Transposition: Themes and Variations. Microbiol Spectr. 2014;2:MDNA300052014.
  34. Krupovic M, Koonin EV. Polintons: A Hotbed of Eukaryotic Virus, Transposon and Plasmid Evolution. Nat Rev Microbiol. 2015;13:105-15.
  35. Gaglia MM, Munger K. More than just oncogenes: mechanisms of tumorigenesis by human viruses. Curr Opin Virol. 2018;32:48-59.
  36. Bondada MS, Yao Y, Nair V. Multifunctional miR-155 Pathway in Avian Oncogenic Virus-Induced Neoplastic Diseases. Noncoding RNA. 2019;5:24.
  37. Wang D, Zeng Z, Zhang S, et al. Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell proliferation through the LOC553103-STMN1 axis. FASEB J. 2020;34:8012-27.
  38. Kunarso G, Chia N, Jeyakani J, et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet. 2010;42:631-4.
  39. Gerdes P, Richardson SR, Mager DL, Faulkner GJ. Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biol. 2016;17:100-16.
  40. Wiesner T, Lee W, Obenauf AC, et al. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature. 2015;526:453-7.
  41. Scarfò I, Pellegrino E, Mereu E, et al. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood. 2016;127:221-32.
  42. Fairbanks DJ, Fairbanks AD, Ogden TH, et al. NANOGP8: evolution of a human-specific retro-oncogene. G3 (Bethesda). 2012;2:1447-57.
  43. Scott EC, Gardner EJ, Masood A, et al. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res. 2016;26:745-55.
  44. Cajuso T, Sulo P, Tanskanen T, et al. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat Commun. 2019;10:4022.
  45. Xia Z, Cochrane DR, Anglesio MS, et al. LINE-1 retrotransposon-mediated DNA transductions in endometriosis associated ovarian cancer. Gynecol Oncol. 2017;147:642-7.
  46. Rodriguez-Martin C, Cidre F, Fernandez-Teijeiro A, et al. Familial retinoblastoma due to intronic LINE-1 insertion causes aberrant and noncanonical mRNA splicing of the RB1 gene. J Hum Genet. 2016;61:463-6.
  47. Borun P, De Rosa M, Nedoszytko B, et al. Specific Alu elements involved in a significant percentage of copy number variations of the STK11 gene in patients with Peutz-Jeghers syndrome. Fam Cancer. 2015;14:455-61.
  48. Мустафин Р.Н. Роль транспозонов в дифференцировке стволовых клеток. Молекулярная генетика, микробиология и вирусология. 2019;37:51-7 [Mustafin RN. The role of transposable elements in the differentiation of stem cells. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya (Molecular Genetics, Microbiology and Virology). 2019;37(2):51-7 (in Russian)]. doi: 10.17116/molgen20193702151
  49. Ramos KS, Montoya-Durango DE, Teneng I, et al. Epigenetic control of embryonic renal cell differentiation by L1 retrotransposon. Birth Defects Res A Clin Mol Teratol. 2011;91:693-702.
  50. Garen A. From a retrovirus infection of mice to a long noncoding RNA that induces proto-oncogene transcription and oncogenesis via an epigenetic transcription switch. Signal Transduct Target Ther. 2016;1:16007.
  51. Мустафин Р.Н., Хуснутдинова Э.К. Роль транспозонов в возникновении многоклеточных животных. Биохимия. 2018;83:291-308 [Mustafin RN, Khusnutdinova EK. Rol' transpozonov v vozniknovenii mnogokletochnykh zhivotnykh. Biokhimiya. 2018;83:291-308 (in Russian)].
  52. Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet. 2008;9:397-405.
  53. Alzohairy AM, Gyulai G, Jansen RK, Bahieldin A. Transposable elements domesticated and neofunctionalized by eukaryotic genomes. Plasmid. 2013;69:1-15.
  54. Novikova O, Belfort M. Mobile Group II Introns as Ancestral Eukaryotic Elements. Trends Genet. 2017;33:773-83.
  55. Wang D, Su Y, Wang X, et al. Transposon-Derived and Satellite-Derived Repetitive Sequences Play Distinct Functional Roles in Mammalian Intron Size Expansion. Evol Bioinform Online. 2012;8:301-19.
  56. Yenerall P, Zhou L. Identifying the mechanisms of intron gain: progress and trends. Biol Direct. 2012;7:29.
  57. Knudson Jr AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971;68:820-3.
  58. Имянитов Е.Н., Хансон К.П. Молекулярная генетика в клинической онкологии. Сибирский онкологический журнал. 2004;2-3:40-7 [Imyanitov EN, Khanson KP. Molekulyarnaya genetika v klinicheskoi onkologii. Sibirskii onkologicheskii zhurnal. 2004;2-3:40-7 (in Russian)].
  59. Coufal NG, Garcia-Perez JL, Peng GE, et al. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci USA. 2011;108:20382-7.
  60. Guendel I, Meltzer BW, Baer A, et al. BRCA1 functions as a novel transcriptional cofactor in HIV-1 infection. Virol J. 2015;12:40.
  61. Coyle-Rink J, Sweet T, Abraham S, et al. Interaction between TGFbeta signaling proteins and C/EBP controls basal and Tat-mediated transcription of HIV-1 LTR in astrocytes. Virology. 2002;299:240-7.
  62. Miret N, Zappia CD, Altamirano G, et al. AhR ligands reactivate LINE-1 retrotransposon in triple-negative breast cancer cells MDA-MB-231 and non-tumorigenic mammary epithelial cells NMuMG. Biochem. Pharmacol. 2020;175:113904.
  63. Pace JK, Gilbert C, Clark MS, Feschotte C. Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc Natl Acad Sci USA. 2008;105:17023-8.
  64. Zhang H, Feschotte C, Han M, Zhang Z. Recurrent Horizontal Transfers of Chapaev Transposons in Diverse Invertebrate and Vertebrate Animals. Genome Biol Evol. 2014;6:1375-86.
  65. Gilbert C, Schaack S, Pace JK, et al. A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature. 2010;464:1347-50.
  66. Gao D, Chu Y, Xia H, et al. Horizontal Transfer of Non-LTR Retrotransposons from Arthropods to Flowering Plants. Mol Biol Evol. 2018;35:354-64.
  67. Dotto BR, Carvalho EL, da Silva AF, et al. HTT-DB: new features and updates. Database (Oxford). 2018;bax102.
  68. Chalvet F, Teysset L, Terzian C, et al. Proviral amplification of the gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline. EMBO J. 1999;18:2659-69.
  69. He G, Ding J, Zhang Y, et al. MicroRNA-21: a kay modulator in oncogenic viral infections. RNA Biol. 2021;22:1-9.
  70. Yuan Z, Sun X, Liu H, Xie J. MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS One. 2011;6:e17666.
  71. Qin S, Jin P, Zhou X, et al. The Role of Transposable Elements in the Origin and Evolution of MicroRNAs in Human. PLoS One. 2015;10:e0131365.
  72. Wu X, Li Y, Liu D, et al. miR-27a an oncogenic microRNA of hepatitis B virus-related hepatocellular carcinoma. Asian Pac J Cancer Prev. 2013;14:885-9.
  73. Morrison K, Manzano M, Chung K, et al. The Oncogenic Kaposi’s Sarcoma-Associated Herpesvirus Encodes a Mimic of the Tumor-Supressive miR-15/16 miRNA Family. Cell Rep. 2019;29:2961-9.
  74. Wong NW, Chen Y, Chen S, Wang X. OncomiR: and online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics. 2018;34:713-5.
  75. Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res. 2017;77:3965-81.
  76. Kapusta A, Kronenberg Z, Lynch VJ, et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 2018;9:e1003470.
  77. Wei G, Qin S, Li W, et al. MDTE DB: a database for microRNAs derived from transposable element. IEEE/ACM Trans Comput Biol Bioinform. 2016;13:1155-60.
  78. Ebron JS, Shankar E, Singh J, et al. MiR-644a Disrupts Oncogenic Transformation and Warburg Effect by Direct Modulation of Multiple Genes of Tumor-Promoting Pathways. Cancer Res. 2019;79:1844-56.
  79. Ye YP, Wu P, Gu CC, et al. MiR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Oncotarget. 2016;7:61312-24.
  80. Fong LY, Taccioli C, Palamarchuk A, et al. Abrogation of esophageal carcinoma development in miR-31 knockout rats. Proc Natl Acad Sci USA. 2020;117:6075-85.
  81. Yu T, Ma P, Wu D, et al. Functions and mechanisms of microRNA-31 in human cancers. Biomed Pharmacother. 2018;108:1162-9.
  82. Rojas F, Hernandez ME, Silva M, et al. The Oncogenic Response to MiR-335 Is Associated with Cell Surface Expression of Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) Activity. PLoS One. 2015;10:e0132026.
  83. Kooistra SM, Norgaard LCR, Lees MJ, et al. A screen identifies the oncogenic micro-RNA miR-378a-5p as a negative regulator of oncogene-induced senescence. PLoS One. 2014;9:e91034.
  84. Li Y, Jiang T, Zhou W, et al. Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers. Nat Commun. 2020;11:100.
  85. Honson DD, Macfarlan TS. A lncRNA-like Role for LINE1s in Development. Dev Cell. 2018;46:132-4.
  86. Laurent GS, Shtokalo D, Dong B, et al. VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer. Genome Biol. 2013;14:R73.
  87. Panzitt K, Tschernatsch MMO, Guelly C, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007;132:330-42.
  88. Leucci E, Vendramin R, Spinazzi M, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;531:518-22.
  89. Gao Y, Meng H, Liu S, et al. LncRNA-HOST2 regulates cell biological behabiors in epithelial ovarian cancer through a mechanism involving microRNA let-7b. Hum Mol Genet. 2015;24:841-52.
  90. Xue M, Chen W, Li X. Urothelial cancer associated 1: a long noncoding RNA with a crucial role in cancer. J Cancer Res Clin Oncol. 2016;142:1407-19.
  91. Wu W, Bhagat TD, Yang X, et al. Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology. 2013;144:956-66.
  92. Zeng Z, Bo H, Gong Z, et al. AFAP1-AS1, a long noncoding RNA upregulated in lung cancer and promotes invasion and metastasis. Tumor Biol. 2016;37:729-37.
  93. Fan J, Xing Y, Wen X, et al. Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis. Genome Biol. 2015;16:139.
  94. Barchitta M, Quattrocchi A, Maugeri A, et al. LINE-1 Hypomethylation in Blood and Tissue Samples as an Epigenetic Marker for Cancer Risk: A Systematic Review and Meta-Analysis. PLoS One. 2014;9:e109478.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема влияния РЭ на активацию онкогенов в канцерогенезе.

Скачать (223KB)
3. Рис. 2. Схема взаимосвязи РЭ с онкосупрессорами и онкогенами в канцерогенезе и сравнение ее с двухударной моделью Кнудсона.

Скачать (207KB)

© ООО "Консилиум Медикум", 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах