Метрономная химиотерапия в детской нейроонкологии: взгляд на проблему

Обложка
  • Авторы: Диникина Ю.В.1, Желудкова О.Г.2, Рыжова М.В.3, Ольхова Л.В.4, Корнеев Д.Ю.2, Белогурова М.Б.1
  • Учреждения:
    1. ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России
    2. ГБУЗ «Научно-практический центр специализированной медицинской помощи им. В.Ф. Войно-Ясенецкого» Департамента здравоохранения г. Москвы
    3. ФГАУ «Национальный медицинский исследовательский центр нейрохирургии им. акад. Н.Н. Бурденко» Минздрава России
    4. Российская детская клиническая больница – филиал ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
  • Выпуск: Том 26, № 2 (2024)
  • Страницы: 238-246
  • Раздел: Статьи
  • URL: https://journals.rcsi.science/1815-1434/article/view/260608
  • DOI: https://doi.org/10.26442/18151434.2024.2.202637
  • ID: 260608

Цитировать

Полный текст

Аннотация

Метрономная химиотерапия (МХТ) является перспективным направлением в лечении онкологических заболеваний, в том числе у детей, при этом все более актуальным становится ее применение у пациентов с рефрактерными и рецидивирующими опухолями центральной нервной системы. Представляя собой режим назначения низких доз противоопухолевых агентов с различным механизмом действия в непрерывном режиме длительно, МХТ позволяет преодолевать резистентность опухолевых клеток и минимизировать токсические эффекты лечения. Сегодня дискутабельными остаются вопросы рационального выбора режимов назначения МХТ в зависимости от типа опухоли, а также использования биомаркеров эффективности ее применения. В статье подробно рассмотрены биологические эффекты метрономных режимов терапии с акцентом на антиангиогенный, а также возможности и ограничения использования МХТ в детской практике и результаты исследований при опухолях центральной нервной системы.

Об авторах

Юлия Валерьевна Диникина

ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России

Автор, ответственный за переписку.
Email: dinikinayulia@mail.ru
ORCID iD: 0000-0002-2003-0982

канд. мед. наук, зав. отд-нием химиотерапии онкогематологических заболеваний и трансплантации костного мозга для детей, зав. Научно-исследовательской лаб. детской нейроиммуноонкологии

Россия, Санкт-Петербург

Ольга Григорьевна Желудкова

ГБУЗ «Научно-практический центр специализированной медицинской помощи им. В.Ф. Войно-Ясенецкого» Департамента здравоохранения г. Москвы

Email: clelud@mail.ru
ORCID iD: 0000-0002-8607-3635

д-р мед. наук, проф.

Россия, Москва

Марина Владимировна Рыжова

ФГАУ «Национальный медицинский исследовательский центр нейрохирургии им. акад. Н.Н. Бурденко» Минздрава России

Email: mrizhova@nsi.ru

д-р мед. наук, врач-патологоанатом, зав. патологоанатомическим отд-нием

Россия, Москва

Людмила Владимировна Ольхова

Российская детская клиническая больница – филиал ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Email: rylkova87@mail.ru
ORCID iD: 0000-0002-7531-6443

врач детский-онколог

Россия, Москва

Денис Юрьевич Корнеев

ГБУЗ «Научно-практический центр специализированной медицинской помощи им. В.Ф. Войно-Ясенецкого» Департамента здравоохранения г. Москвы

Email: elldecor2016@gmail.com

врач детский-онколог онкологического отд-ния №2

Россия, Москва

Маргарита Борисовна Белогурова

ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России

Email: deton.hospital31@inbox.ru
ORCID iD: 0000-0002-7471-7181

д-р мед. наук, проф., вед. науч. сотр. Научно-исследовательской лаб. детской нейроиммуноонкологии

Россия, Санкт-Петербург

Список литературы

  1. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest. 2000;105(8):1045-7.
  2. Kerbel RS. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. Bioessays. 1991;13(1):31-6.
  3. Banchi M, Fini E, Crucitta S, Bocci G. Metronomic Chemotherapy in Pediatric Oncology: From Preclinical Evidence to Clinical Studies. J Clin Med. 2022;1-34. doi: 10.3390/jcm11216254.
  4. André N, Banavali S, Snihur Y, Pasquier E. Has the time come for metronomics in low-income and middle-income countries? Lancet Oncol. 2013;14:e239-e48.
  5. Pramanik R, Bakhshi S. Metronomic therapy in pediatric oncology: A snapshot. Pediatr Blood Cancer. 2019;66:e27811. doi: 10.1002/pbc.27811.
  6. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353-64.
  7. Yu JL, Rak J, Carmeliet P, Coomber BL. Heterogenous vascular dependence of tumour populations. Am J Path. 2001;58:1325-34.
  8. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.
  9. Folkman J, Kalluri R. Tumor Angiogenesis. In: Cancer Medicine. Holland et al., eds. 2000; B.C. Decker Inc. Hamilton, Ontario, Canada.
  10. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1995;1:27-31.
  11. Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis. Nature. 1982;297:307-12.
  12. Browder T, Butterfield CE, Kraling BM, et al. Anti-angio-genic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 2000;60:1878-86.
  13. Chamberlain MC. Recurrent supratentorial malignant gliomas in children. Long-term salvage therapy with oral etoposide. Arch Neurol. 1997;54:554-8.
  14. Beecken WDC, Fernandez S, Jouddrn SM, et al. Effect of anti-angiogenic therapy on slowly growing, poorly vascularized tumours in mice. J Natl Cancer Inst. 2001;93:382-7.
  15. Spini A, Ciccone V, Rosellini P, et al. Safety of Anti-Angiogenic Drugs in Pediatric Patients with Solid Tumors: A Systematic Review and Meta-Analysis. Cancers. 2022;14:5315. doi: 10.3390/cancers14215315
  16. Sie M, Dunnen WFD, Hoving EW, de Bont ES. Anti-angiogenic therapy in pediatric brain tumors: An effective strategy? Crit Rev Oncol. 2014;89:418-32.
  17. Ollauri-Ibáñez C, Astigarraga I. Use of Antiangiogenic Therapies in Pediatric Solid Tumors. Cancers. 2021;13:253. doi: 10.3390/cancers13020253
  18. Zirlik K, Duyster J. Anti-Angiogenics: Current Situation and Future Perspectives. Oncol Res Treat. 2018;41:166-71.
  19. Garcia J, Hurwitz HI, Sandler AB, et al. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat Rev. 2020;86:102017.
  20. Petrillo M, Scambia G, Ferrandina G. Novel targets for VEGF-independent anti-angiogenic drugs. Expert Opin Investig Drugs. 2012;21:451-72.
  21. Nicolini G, Forini F, Kusmic C, et al. Angiopoietin 2 signal complexity in cardiovascular disease and cancer. Life Sci. 2019;239:117080.
  22. Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology. Cells. 2019;8:471.
  23. Dowlati A, Vlahovic G, Natale RB, et al. A Phase I, First-in-Human Study of AMG 780, an Angiopoietin-1 and -2 Inhibitor, in Patients with Advanced Solid Tumors. Clin Cancer Res. 2016;22:4574-84.
  24. Lv PC, Jiang AQ, Zhang WM, Zhu HL. FAK inhibitors in cancer, a patent review. Expert Opin Ther Patents. 2018;28:139-45.
  25. De Vinuesa AG, Bocci M, Pietras K, Dijke P. Ten Targeting tumour vasculature by inhibiting activin receptor-like kinase (ALK)1 function. Biochem Soc Trans. 2016;44:1142-9.
  26. Ollauri-Ibáñez C, Núñez-Gómez E, Egido-Turrión C, et al. Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis. 2020;23:231-47.
  27. Uneda S, Toi H, Tsujie T, et al. Anti-endoglin monoclonal antibodies are effective for suppressing metastasis and the primary tumors by targeting tumor vasculature. Int J Cancer. 2009;125:1446-53.
  28. Eckerdt F, Clymer J, Bell JB, et al. Pharmacological mTOR targeting enhances the antineoplastic effects of selective PI3Kα inhibition in medulloblastoma. Sci Rep. 2019;9(1):1-11.
  29. Chaturvedi NK, Kling MJ, Coulter DW, et al. Improved therapy for medulloblastoma: targeting hedgehog and PI3K-mTOR signaling pathways in combination with chemotherapy. Oncotarget. 2018;9(24):16619.
  30. Vo KT, Karski EE, Nasholm NM, et al. Phase 1 study of sirolimus in combination with oral cyclophosphamide and topotecan in children and young adults with relapsed and refractory solid tumors. Oncotarget. 2017;8(14):23851.
  31. Sterba J, Pavelka Z, Andre N, et al. Second complete remission of relapsed medulloblastoma induced by metronomic chemotherapy. Pediatr Blood Cancer. 2010;54(4):616-7.
  32. Peyrl A, Chocholous M, Kieran MW, et al. Antiangiogenic metronomic therapy for children with recurrent embryonal brain tumors. Pediatr Blood Cancer. 2012;59(3):511-7.
  33. Slavc I, Peyrl A, Gojo J, et al. MBCL-43. Reccurent medulloblastoma – long-term survival with a “MEMMAT” based antiangiogenic approach. Neuro-Oncol. 2020;22(Suppl. 3): iii397.
  34. Sie M, Dunnen WFD, Hoving EW, de Bont ES. Anti-angiogenic therapy in pediatric brain tumors: An effective strategy? Crit Rev Oncol. 2014;89:418-32.
  35. Carcamo B, Francia GJ. Cyclic Metronomic Chemotherapy for Pediatric Tumors: Six Case Reports and a Review of the Literature. J Clin Med. 2022;11(10):2849.
  36. Yoshida S, Amano H, Hayashi I, et al. COX-2/VEGF-dependent facilitation of tumor-associated angiogenesis and tumor growth in vivo. Lab Invest. 2003;83(10):1385-94.
  37. Pasquier E, Kavallaris M, André N. Metronomic Chemotherapy: New Rationale for New Directions. Nat Rev Clin Oncol. 2010;7:455-65.
  38. Highley MS, Landuyt B, Prenen H, et al. Nitrogen Mustards. Pharmacol Rev. 2022;74(3):552-99. doi: 10.1124/pharmrev.120.000121.
  39. Bahl A, Bakhshi SJ. Metronomic chemotherapy in progressive pediatric malignancies: old drugs in new package. Indian J Pediatr. 2012;79(12):1617-22.
  40. Bocci G, Francia G, Man S, et al. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA. 2003;100:12917-22.
  41. Bocci G, Nicolaou KC, Kerbel RS. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res. 2002;62:6938-43.
  42. Natale G, Bocci G. Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data. Cancer Lett. 2018;432:28-37.
  43. Folkins C, Man S, Xu P, et al. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 2007;67:3560-4.
  44. Banissi C, Ghiringhelli F, Chen L, Carpentier AF. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother. 2009;58:1627-34.
  45. Liao D, Estévez-Salmerón L, Tlsty TD. Conceptualizing a Tool to Optimize Therapy Based on Dynamic Heterogeneity. Phys Biol. 2012;9(6):065005.
  46. Kerbel RS, Shaked Y. The potential clinical promise of “multimodality” metronomic chemotherapy revealed by preclinical studies of metastatic disease. Cancer Lett. 2017;400:293-304.
  47. Sie M, de Bont ESJM, Scherpen FJG, et al. Tumour vasculature and angiogenic profile of paediatric pilocytic astrocytoma; is it much different from glioblastoma? Neuropathol Appl Neurobiol. 2010;36:636-47.
  48. Gorsi HS, Khanna P, Tumblin M, et al. Single-agent bevacizumab in the treatment of recurrent or refractory pediatric low-grade glioma: A single institutional experience. Pediatr Blood Cancer. 2018;65:e27234.
  49. Verschuur A, Heng-Maillard MA, Dory-Lautrec P, et al. Metronomic Four-Drug Regimen Has Anti-tumor Activity in Pediatric Low-Grade Glioma; The Results of a Phase II Clinical Trial. Front Pharmacol. 2018;9:00950. doi: 10.3389/fphar.2018.00950
  50. Kalra M, Heath JA, Kellie SJ, et al. Confirmation of Bevacizumab Activity, and Maintenance of Efficacy in Retreatment After Subsequent Relapse, in Pediatric Low-grade Glioma. J Pediatr Hematol. 2015;37:e341-6.
  51. Avery RA, Hwang EI, Jakacki RI, Packer RJ. Marked Recovery of Vision in Children with Optic Pathway Gliomas Treated with Bevacizumab. JAMA Ophthalmol. 2014;132:111-4.
  52. Thomas AA, Tucker SM, Nelson CJ, et al. Anaplastic pleomorphic xanthoastrocytoma with leptomeningeal dissemination responsive to BRAF inhibition and bevacizumab. Pediatr Blood Cancer. 2019;66:e27465.
  53. Metts RD, Bartynski W, Welsh CT, et al. Bevacizumab Therapy for Pilomyxoid Astrocytoma. J Pediatr Hematol. 2017;39:e219-23.
  54. Legault G, Kieran MW, Scott RM, et al. Recurrent Ascites in a Patient with Low-grade Astrocytoma and Ventriculo-Peritoneal Shunt Treated with the Multikinase Inhibitor Sorafenib. J Pediatr Hematol. 2014;36:e533-5.
  55. Slavc I, Mayr L, Stepien N, et al. Improved Long-Term Survival of Patients with Recurrent Medulloblastoma Treated with a “MEMMAT-like” Metronomic Antiangiogenic Approach. Cancers. 2022;14:5128. doi: 10.3390/cancers14205128
  56. Thompson EM, Keir ST, Venkatraman T, et al. The role of angiogenesis in Group 3 medulloblastoma pathogenesis and survival. Neuro-Oncology 2017;19:1217-27.
  57. Levy AS, Krailo M, Chi S, et al. Temozolomide with Irinotecan versus Temozolomide, Irinotecan plus Bevacizumab for Recurrent Medulloblastoma of Childhood: Report of a COG Randomized Phase II Screening Trial. Pediatr Blood Cancer. 2021;68:e29031.
  58. Aguilera D, Mazewski C, Fangusaro J, et al. Response to bevacizumab, irinotecan, and temozolomide in children with relapsed medulloblastoma: A multi-institutional experience. Child’s Nerv Syst. 2013;29:589-96.
  59. Piha-Paul SA, Shin SJ, Vats T, et al. Pediatric patients with refractory central nervous system tumors: Experiences of a clinical trial combining bevacizumab and temsirolimus. Anticancer Res. 2014;34:1939-45.
  60. Fleischhack G, Jaehde U, Bode U. Pharmacokinetics Following Intraventricular Administration of Chemotherapy in Patients with Neoplastic Meningitis. Clin Pharmacokinet. 2005;44:1-31.
  61. Korshunov A, Sahm F, Zheludkova O, et al. DNA Methylation Profiling Is a Method of Choice for Molecular Verification of Pediatric WNT-Activated Medulloblastomas. Neuro-Oncol. 2019;21:214-21.
  62. Slavc I, Schuller E, Falger J, et al. Feasibility of Long-Term Intraventricular Therapy with Mafosfamide (n = 26) and Etoposide (n = 11): Experience in 26 Children with Disseminated Malignant Brain Tumors. J Neurooncol. 2003;64:239-47.
  63. Gupta T, Maitre M, Sastri GJ, et al. Outcomes of Salvage Re-Irradiation in Recurrent Medulloblastoma Correlate with Age at Initial Diagnosis, Primary Risk-Stratification, and Molecular Subgrouping. J Neurooncol. 2019;144:283-91.
  64. Tsang DS, Sarhan N, Ramaswamy V, et al. Re-Irradiation for Children with Recurrent Medulloblastoma in Toronto, Canada: A 20-Year Experience. J Neurooncol. 2019;145:107-14.
  65. Kumar R, Smith KS, Deng M, et al. Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. J Clin Oncol Off J Am Soc Clin Oncol. 2021;39:807-21.
  66. Šterba J, Pavelka Z, Šlampa P. Concomitant radiotherapy and metronomic temozolomide in pediatric high-risk brain tumors. Neoplasma. 2002;49:117-20.
  67. Pasqualini C, Rubino J, Brard C, et al. Phase II and biomarker study of programmed cell death protein 1 inhibitor nivolumab and metronomic cyclophosphamide in paediatric relapsed/refractory solid tumours: Arm G of AcSé-ESMART, a trial of the European Innovative Therapies for Children With Cance. Eur J Cancer. 2021;150:53-62.
  68. Zapletalova D, Andr N, Deak L, et al. Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: A multicenter experience. Oncology. 2012;82:249-60.
  69. Craveiro RB, Ehrhardt M, Holst M, et al. In comparative analysis of multi-kinase inhibitors for targeted medulloblastoma therapy pazopanib exhibits promising in vitro and in vivo efficacy. Oncotarget. 2014;5:7149.
  70. Abouantoun TJ, Castellino RC, Macdonald TJ. Sunitinib induces PTEN expression and inhibits PDGFR signaling and migration of medulloblastoma cells. J Neuro-Oncol. 2010;101:215-26.
  71. Adolph JE, Fleischhack G, Gaab C, et al. Systemic chemotherapy of pediatric recurrent ependymomas: results from the German HIT-REZ studies. J Neurooncol. 2021;155(2):193-202. doi: 10.1007/s11060-021-03867-8
  72. Renzi S, Michaeli O, Salvador H, et al. Bevacizumab for NF2-associated vestibular schwannomas of childhood and adolescence. Pediatr Blood Cancer. 2020;67(5):e28228. doi: 10.1002/pbc.28228
  73. DePrimo SE, Bello C. Surrogate biomarkers in evaluating response to anti-angiogenic agents: focus on sunitinib. Ann Oncol. 2007;18 (Suppl. 10):x11-9. doi: 10.1093/annonc/mdm409
  74. Pilotto C, Beshlawi I, Thomas A, Grundy RG. Vascular stenosis in a child with visual pathway glioma treated with bevacizumab: A case report and review of literature. Child’s Nerv Syst. 2017;34:781-5.
  75. Hwang EI, Jakacki RI, Fisher MJ, et al. Long-term efficacy and toxicity of bevacizumab-based therapy in children with recurrent low-grade gliomas. Pediatr Blood Cancer. 2013;60(5):776-82. doi: 10.1002/pbc.24297
  76. De Vita S, De Matteis S, Laurenti L, et al. Secondary Ph+ acute lymphoblastic leukemia after temozolomide. Ann Hematol. 2005;84(11):760-2.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Основные мишени для ингибиторов ангиогенеза [адаптировано из 17].

Скачать (343KB)
3. Рис. 2. Основные механизмы реализации противоопухолевого эффекта метрономных режимов циклофосфамида (адаптировано из [38]).

Скачать (157KB)

© ООО "Консилиум Медикум", 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах