Effect of internal subtype on the efficacy of CDK4/6 inhibitor therapy in advanced HR+/HER2breast cancer: A review

Cover Page

Cite item

Full Text

Abstract

The classification of breast cancer (BC) by immunohistochemical phenotypes is widely used in routine clinical practice. However, the genetic profile of the tumor does not always correspond to the pathomorphological one, which can significantly affect the prognosis and predict the effectiveness of therapy in BC. This literature review examines the effectiveness of endocrine therapy depending on the internal subtype of BC, and also presents data on the effectiveness of CDK4/6 inhibitors in these subgroups. It has been shown that during metastasis, the tumor acquires a more aggressive subtype (for example, it switches from luminal to HER2-E or basal-like), which can be stopped when using CDK4/6 inhibitors: the change of the internal subtype passes into a more favorable group.

About the authors

Katerina S. Grechukhina

Loginov Moscow Clinical Scientific Center

Author for correspondence.
Email: dr.grechukhina@gmail.com
ORCID iD: 0000-0002-0616-5477

Cand. Sci. (Med.)

Russian Federation, Moscow

Daria A. Filonenko

Loginov Moscow Clinical Scientific Center

Email: dr.grechukhina@gmail.com
ORCID iD: 0000-0002-7224-3111

Cand. Sci. (Med.)

Russian Federation, Moscow

Margarita V. Sukhova

Loginov Moscow Clinical Scientific Center

Email: dr.grechukhina@gmail.com
ORCID iD: 0009-0004-7119-0160

oncologist

Russian Federation, Moscow

Liudmila G. Zhukova

Loginov Moscow Clinical Scientific Center

Email: dr.grechukhina@gmail.com
ORCID iD: 0000-0003-4848-6938

D. Sci. (Med.), Corr. Memb. RAS

Russian Federation, Moscow

References

  1. Russnes HG, Lingjærde OC, Børresen-Dale AL, Caldas C. Breast Cancer Molecular Stratification: From Intrinsic Subtypes to Integrative Clusters. Am J Pathol. 2017;187(10):2152-62. doi: 10.1016/j.ajpath.2017.04.022
  2. Cejalvo JM, Pascual T, Fernández-Martínez A, et al. Clinical implications of the non-luminal intrinsic subtypes in hormone receptor-positive breast cancer. Cancer Treat Rev. 2018;67:63-70. doi: 10.1016/j.ctrv.2018.04.015
  3. Prat A, Chaudhury A, Solovieff N, et al. Correlative Biomarker Analysis of Intrinsic Subtypes and Efficacy Across the MONALEESA Phase III Studies. J Clin Oncol. 2021;39(13):1458-67. doi: 10.1200/JCO.20.02977
  4. Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160-7. doi: 10.1200/JCO.2008.18.1370
  5. Paquet ER, Hallett MT. Absolute assignment of breast cancer intrinsic molecular subtype. J Natl Cancer Inst. 2015;107(1):357. doi: 10.1093/jnci/dju357
  6. Turner NC, Liu Y, Zhu Z, et al. Cyclin E1 Expression and Palbociclib Efficacy in Previously Treated Hormone Receptor-Positive Metastatic Breast Cancer. J Clin Oncol. 2019;37(14):1169-78. doi: 10.1200/JCO.18.00925
  7. Finn RS, Liu Y, Zhu Z, et al. Biomarker Analyses of Response to Cyclin-Dependent Kinase 4/6 Inhibition and Endocrine Therapy in Women with Treatment-Naïve Metastatic Breast Cancer. Clin Cancer Res. 2020;26(1):110-21. doi: 10.1158/1078-0432.CCR-19-0751
  8. Burstein MD, Tsimelzon A, Poage GM, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688-98. doi: 10.1158/1078-0432.CCR-14-0432
  9. Badve S, Dabbs DJ, Schnitt SJ, et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol. 2011;24(2):157-67. doi: 10.1038/modpathol.2010.200
  10. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70. doi: 10.1038/nature11412
  11. Cejalvo JM, Martínez de Dueñas E, Galván P, et al. Intrinsic Subtypes and Gene Expression Profiles in Primary and Metastatic Breast Cancer. Cancer Res. 2017;77(9):2213-21. doi: 10.1158/0008-5472.CAN-16-2717
  12. Godoy-Ortiz A, Sanchez-Muñoz A, Chica Parrado MR, et al. Deciphering HER2 Breast Cancer Disease: Biological and Clinical Implications. Front Oncol. 2019;9:1124. doi: 10.3389/fonc.2019.01124
  13. Prat A, Carey LA, Adamo B, et al. Molecular features and survival outcomes of the intrinsic subtypes within HER2-positive breast cancer. J Natl Cancer Inst. 2014;106(8). doi: 10.1093/jnci/dju152
  14. Ferrari A, Vincent-Salomon A, Pivot X, et al. A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers. Nat Commun. 2016;7:12222. doi: 10.1038/ncomms12222
  15. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177-82. doi: 10.1126/science.3798106
  16. Baselga J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist. 2002;7(Suppl. 4):2-8. doi: 10.1634/theoncologist.7-suppl_4-2
  17. Polyak K. Heterogeneity in breast cancer. J Clin Invest. 2011;121(10):3786-8. doi: 10.1172/JCI60534
  18. Kim HK, Park KH, Kim Y, et al. Discordance of the PAM50 Intrinsic Subtypes Compared with Immunohistochemistry-Based Surrogate in Breast Cancer Patients: Potential Implication of Genomic Alterations of Discordance. Cancer Res Treat. 2019;51(2):737-47. doi: 10.4143/crt.2018.342
  19. Cheang MC, Martin M, Nielsen TO, et al. Defining breast cancer intrinsic subtypes by quantitative receptor expression. Oncologist. 2015;20(5):474-82. doi: 10.1634/theoncologist.2014-0372
  20. Perez EA, Romond EH, Suman VJ, et al. Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol. 2011;29(25):3366-73. doi: 10.1200/JCO.2011.35.0868
  21. Perez EA, Romond EH, Suman VJ, et al. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol. 2014;32(33):3744-52. doi: 10.1200/JCO.2014.55.5730
  22. Perez EA, Ballman KV, Mashadi-Hossein A, et al. Intrinsic Subtype and Therapeutic Response Among HER2-Positive Breaty st Tumors from the NCCTG (Alliance) N9831 Trial. J Natl Cancer Inst. 2017;109(2). doi: 10.1093/jnci/djw207
  23. Prat A, Parker JS, Fan C, et al. Concordance among gene expression-based predictors for ER-positive breast cancer treated with adjuvant tamoxifen. Ann Oncol. 2012;23(11):2866-73. doi: 10.1093/annonc/mds080
  24. Lesurf R, Griffith OL, Griffith M, et al. Genomic characterization of HER2-positive breast cancer and response to neoadjuvant trastuzumab and chemotherapy-results from the ACOSOG Z1041 (Alliance) trial. Ann Oncol. 2017;28(5):1070-7. doi: 10.1093/annonc/mdx048
  25. Prat A, Cheang MC, Galván P, et al. Prognostic Value of Intrinsic Subtypes in Hormone Receptor-Positive Metastatic Breast Cancer Treated With Letrozole With or Without Lapatinib. JAMA Oncol. 2016;2(10):1287-94. doi: 10.1001/jamaoncol.2016.0922
  26. Prat A, Brase JC, Cheng Y, et al. Everolimus plus Exemestane for Hormone Receptor-Positive Advanced Breast Cancer: A PAM50 Intrinsic Subtype Analysis of BOLERO-2. Oncologist. 2019;24(7):893-900. doi: 10.1634/theoncologist.2018-0407
  27. Ellis MJ, Suman VJ, Hoog J, et al. Randomized phase II neoadjuvant comparison between letrozole, anastrozole, and exemestane for postmenopausal women with estrogen receptor-rich stage 2 to 3 breast cancer: clinical and biomarker outcomes and predictive value of the baseline PAM50-based intrinsic subtypeACOSOG Z1031. J Clin Oncol. 2011;29(17):2342-9. doi: 10.1200/JCO.2010.31.6950
  28. Brasó-Maristany F, Palafox M, Monserrat L, et al. 16P Understanding the biologic determinants of ribociclib efficacy in breast cancer. Ann Oncol. 2021;32:21-36. doi: 10.1016/j.annonc.2021.03.030
  29. Portman N, Alexandrou S, Carson E, et al. Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer. Endocr Relat Cancer. 2019;26(1):R15-30. doi: 10.1530/ERC-18-0317
  30. Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77-106. doi: 10.1016/j.gendis.2018.05.001
  31. Witkiewicz AK, Cox D, Knudsen ES. CDK4/6 inhibition provides a potent adjunct to Her2-targeted therapies in preclinical breast cancer models. Genes Cancer. 2014;5(7-8):261-72. doi: 10.18632/genesandcancer.24
  32. Piezzo M, Cocco S, Caputo R, et al. Targeting Cell Cycle in Breast Cancer: CDK4/6 Inhibitors. Int J Mol Sci. 2020;21(18). doi: 10.3390/ijms21186479
  33. Zhang J, Bu X, Wang H, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553(7686):91-5. doi: 10.1038/nature25015
  34. Laphanuwat P, Jirawatnotai S. Immunomodulatory Roles of Cell Cycle Regulators. Front Cell Dev Biol. 2019;7:23. doi: 10.3389/fcell.2019.00023
  35. Chaikovsky AC, Sage J. Beyond the Cell Cycle: Enhancing the Immune Surveillance of Tumors Via CDK4/6 Inhibition. Mol Cancer Res. 2018;16(10):1454-7. doi: 10.1158/1541-7786.MCR-18-0201
  36. Finn R, Liu Y, Martin M, et al. Abstract P2-09-10: Comprehensive gene expression biomarker analysis of CDK 4/6 and endocrine pathways from the PALOMA-2 study. Cancer Res. 2018;78:P2-09-10. doi: 10.1158/1538-7445.SABCS17-P2-09-10
  37. Carey L, Solovieff N, Andre F, O’Shaughnessy J. GS2-00. Correlative analysis of overall survival by intrinsic subtype across the MONALEESA-2, -3, and -7 studies of ribociclib + endocrine therapy in patients with HR+/HER2advanced breast cancer. San Antonio Breast Cancer Symposium. San Antonio, Texas. 2021.
  38. Prat A, Chaudhury A, Solovieff N, et al. Abstract GS1-04: Correlative biomarker analysis of intrinsic subtypes and efficacy across the MONALEESA Phase III studies. San Antonio Breast Cancer Symposium. San Antonio, Texas. 2020.
  39. Jacobson A. Ribociclib Improves Overall Survival in HR+/HER2Metastatic Breast Cancer Across Common Genomic and Clinical Subtypes. Oncologist. 2022;27(Suppl. 1): S11-2. doi: 10.1093/oncolo/oyac010
  40. Martínez OS, Tolosa P, Sánchez De Torre A, et al. 23P CDK4/6 inhibition and endocrine therapy (ET) in the HER2-enriched subtype (HER2-E) in hormone receptor-positive/HER2-negative (HR+/HER2-) advanced breast cancer (ABC): a retrospective analysis of real-world data. Ann Oncol. 2021;32:21-36. doi: 10.1016/j.annonc.2021.03.037
  41. Pascual T, Stover DG, Thuerigen A, et al. 272TiP HARMONIA SOLTI-2101 / AFT-58: A head-to-head phase III study comparing ribociclib (RIB) and palbociclib (PAL) in patients (pts) with hormone receptor-positive/HER2-negative/HER2-enriched (HR+/HER2-/HER2-E) advanced breast cancer (ABC). Ann Oncol. 2022;33:S662. doi: 10.1016/j.annonc.2022.07.1856
  42. Jørgensen CLT, Larsson AM, Forsare C, et al. PAM50 Intrinsic Subtype Profiles in Primary and Metastatic Breast Cancer Show a Significant Shift toward More Aggressive Subtypes with Prognostic Implications. Cancers (Basel). 2021;13(7). doi: 10.3390/cancers13071592
  43. Prat A, Saura C, Pascual T, et al. Ribociclib plus letrozole versus chemotherapy for postmenopausal women with hormone receptor-positive, HER2-negative, luminal B breast cancer (CORALLEEN): an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 2020;21(1):33-43. doi: 10.1016/S1470-2045(19)30786-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the correlation between morphologic phenotype and internal subtype of breast cancer (BC).

Download (152KB)
3. Fig. 2. Baseline Ki-67 values and Ki-67 values at the time of surgery in patients with luminal A and B, HER2-E subtypes of BC [27].

Download (98KB)
4. Fig. 3. PFS differences according to internal subtype: a – in the PALOMA-2 and PALOMA-3 studies; b – in the pooled MONALEESA analysis [3, 6, 36].

Download (192KB)
5. Fig. 4. Distribution of HR+/HER2- samples by internal subtypes in the MONALEESA study cycle (from left to right: -2, -3, -7, pooled analysis), % [3].

Download (118KB)
6. Fig. 5. Median PFS according to internal subtype of BC in the pooled analysis of the MONALEESA trials: a – placebo group; b – ribociclib group.

Download (319KB)
7. Fig. 6. Overall response rate according to internal subtype of BC in the pooled analysis of the MONALEESA trials.

Download (108KB)
8. Fig. 7. Median overall survival (post-hoc analysis) according to internal BC subtype in the pooled analysis of the MONALEESA trials: a – in the placebo group; b – in the ribociclib group [37, 39].

Download (301KB)
9. Fig. 8. Median PFS and overall response rate with therapy with palbociclib/abemaciclib and ribociclib for: a – luminal A; b – luminal B; c – HER2-E subtypes.

Download (197KB)
10. Fig. 9. Change in internal tumor subtype during metastasis according to studies, %: a – J. Cejalvo et al.; b – S. Jørgensen et al. [2, 42].

Download (116KB)
11. Fig. 10. Schematic representation of the effect of ribociclib on changing tumor biology. Ribociclib probably induces a switch to a less aggressive luminal subtype [30].

Download (271KB)

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies