Перспективные системы для управления протезами: обзор
- Авторы: Самандари А.М.1
-
Учреждения:
- Белгородский государственный национальный исследовательский университет
- Выпуск: Том 192, № 4 (2024)
- Страницы: 150-160
- Раздел: ЭЛЕКТРОНИКА, ФОТОНИКА, ПРИБОРОСТРОЕНИЕ И СВЯЗЬ
- URL: https://journals.rcsi.science/1813-8225/article/view/279210
- DOI: https://doi.org/10.25206/1813-8225-2024-192-150-160
- EDN: https://elibrary.ru/ANKBHV
- ID: 279210
Цитировать
Полный текст
Аннотация
Люди с ограниченными возможностями в условиях стремительной научно-технической революции надеются, что она преодолеет лишь оказание им поддержки и найдет подходящие решения, чтобы вести нормальную жизнь. Взаимодействие наук между собой учитывает проблему физических недостатков и, в частности, потерю как верхних, так и нижних конечностей. Современные протезы являются продуктом пересечения науки и технологической революции и все еще находятся на пути своего становления, поскольку содержат исполнительные механизмы, которые могут управляться сигналами мозга по принципу нейроинтерфейсов. Методы нейровизуализации, такие как электромиография, функциональная инфракрасная спектроскопия и электроэнцефалография, являются превосходными методами управления этими современными протезами, которые можно смоделировать по двум функциям, а именно по независимой работе и гибридной работе. В свете этих данных статья рассматривает эти системы в их индивидуальных и гибридных состояниях. Кроме того, в статье указывается, какой из этих методов может быть выбран в качестве предпочтительной системы. Область применения методологии исследования ограничена методами нейровизуализации в отношении сценариев неврологической реабилитации и восстановления утраченных функций. Обзор имеет три направления. Первое направление собирает, обобщает и оценивает информацию из соответствующих исследований, опубликованных за последнее десятилетие. Второе представляет важные результаты предыдущих экспериментальных результатов в этой области в отношении текущих исследований. Исследование было проведено систематически, чтобы предоставить всем экспертам и ученым полное представление и основанные на доказательствах методы управления протезами. Третья часть заключается в выявлении широкой области знаний, требующей дальнейшего изучения, и отслеживании последовательности научных достижений в этих системах и возможности интеграции между собой для создания наиболее перспективной системы управления протезами.
Об авторах
Али Мирдан Самандари
Белгородский государственный национальный исследовательский университет
Автор, ответственный за переписку.
Email: aliofphysics777ali@gmail.com
aспирант
Россия, г. БелгородСписок литературы
- Neelum Y. S., Zareena K., syed Usama A. fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees // Sensors. 2022. Vol. 22. 726. doi: 10.3390/s22030726.
- Asadullayev R. G., Afonin A. N., Shchetinina E. S. Recognition of patterns of motor activity by a neural network based on continuous optical tomography FNIRS data // Economics. Information technologies. 2021.Vol. 48, no. 4 P. 735–746. doi: 10.52575/2687-0932-2021-48-4-735-746. EDN: NFDBUX.
- Hramov A. E., Maksimenko V. A., Pisarchik A. N. Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain state // Physics Reports. 2021. Vol. 918. P. 1–133. doi: 10.1016/j.physrep.2021.03.002.
- Peksa J., Mamchur D. State-of-the-Art on Brain-Computer Interface Technology // Sensors 2023. Vol. 23. 6001. DOI: 10.3390/ s23136001.
- Sergio L. N., Alex C. C., Forti R. M. [et al.]. Revealing the spatiotemporal requirements for accurate subject identification with resting-state functional connectivity: a simultaneous fNIRS-fMRI study // Neurophotonics. 2023. Vol. 10(1). doi: 10.1117/1.NPh.10.1.013510.
- Klein F. S., Debener K. W., Kranczioch C. fMRI-based validation of continuous-wave fNIRS of supplementary motor area activation during motor execution and motor imagery // Scientific Reports. 2022. Vol. 12 (1). doi: 10.1038/s41598-022-06519-7.
- Deligani R. J., Borgheai S. B., McLinden J. [et al.]. Multimodal fusion of EEG-fNIRS: a mutual information-based hybrid classification framework // Biomed Opt Express. 2021. Vol. 12 (3). 1635. doi: 10.1364/boe.413666.
- Asanza V., Pelaez E., Loayza F. [et al.]. Identification of lower-limb motor tasks via brain-computer interfaces: a topical overview // Sensors. 2022. Vol. 22 (5). doi: 10.3390/s22052028.
- Khajuria A., Sharma R., Joshi D. EEG Dynamics of Locomotion and Balancing: Solution to Neuro-Rehabilitation // Clinical EEG and Neuroscience. 2024. Vol. 55 (1). P. 143–163. doi: 10.1177/15500594221123690.
- Mondini V., Sburlea A. I., Müller-Putz G. R. Towards unlocking motor control in spinal cord injured by applying an online EEG-based framework to decode motor intention, trajectory and error processing // Scientific Reports. 2024. Vol. 14. 4714. doi: 10.1038/s41598-024-55413-x.
- Usama A. S., Zareena K., Neelum Y. S. Control of a Prosthetic Arm using fNIRS, A Neural-Machine Interface // Data Acquisition – Recent Advances and Applications in Biomedical Engineering. 2020. doi: 10.5772/intechopen.93565.
- Afonin A. N., Asadullaev R. G., Sitnikova M. A. Analysis of data of FNIRS-tomograph for management of LIMB-protoses by means of Brain-computer interface // Scientific and Technical Volga region Bulletin. 2018. Vol. 11. P. 182–185. EDN: YTOMIP.
- Dario F., Ning J., Hubertus R. [et al.]. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges // IEEE Trans. Neural Syst. Rehabil. Eng. 2014. Vol. 22, no. 4. P. 797–809. doi: 10.1109/TNSRE.2014.2305111.
- Becerra-Fajardo L., Minguillon J., Krob M. O. [et al.]. First-in-human demonstration of floating EMG sensors and stimulators wirelessly powered and operated by volume conduction // Journal of NeuroEngineering and Rehabilitation. 2024. Vol. 21 (1). 4. doi: 10.1186/s12984-023-01295-5.
- Osama M., Allauddin U. Design and modelling of lower prosthetic limb for additive manufacturing // Proceedings of IMEC-2022, 14th – 15th January, Karachi, Pakistan. 2022. 8 p.
- Satam I. A. A comprehensive study of EEG-based41control of artificial arms // Vojnotehnički glasnik / Military Technical Courier. 2023. Vol. 71, Issue 1. doi: 10.5937/vojtehg71-41366.
- Tao S., Zhe Y., Guo Sh. [et al.] Review of sEMG for Robot Control: Techniques and Applicationsby // Applied Sciences. 2023.Vol. 13 (17). 9546. doi: 10.3390/app13179546.
- Khorasani A., Hulsizer J., Paul V. [et al.]. Myoelectric interface for neurorehabilitation conditioning to reduce abnormal leg co activation after stroke: a pilot study // Journal NeuroEngineering Rehabil. 2024. Vol. 21. 11. doi: 10.1186/s12984-024-01305-0.
- Asanza V., Pelaez E., Loayza F. [et al.]. Identification of lower-limb motor tasks via brain-computer interfaces: a topical overview. Sensors. 2022. Vol. 22 (5). 2028. doi: 10.3390/s22052028.
- Abdalmalak A., Milej D., Cohenet D. [et al.]. Using fMRI to investigate the potential cause of inverse oxygenation reported in fNIRS studies of motor imagery // Neurosci Lett. 2020. Vol. 714. 134607. doi: 10.1016/j.neulet.2019.134607.
- Wang H., Yan F., Xu T. [et al.]. Brain-Controlled Wheelchair Review: From Wet Electrode to Dry Electrode, from Single Modal to Hybrid Modal, from Synchronous to Asynchronous // IEEE Access. 2021. Vol. 9. P. 55920–55938. doi: 10.1109/ACCESS.2021.3071599.
- Xu B., Wenlong L., Deping L. [et al.]. Continuous Hybrid BCI Control for Robotic Arm Using Noninvasive Electroencephalogram, Computer Vision, and Eye Tracking // Mathematics. 2022. Vol. 10, no. 4. doi: 10.3390/math10040618.
- Sun Z., H. Zihao, D. Feng [et al.]. A Novel Multimodal Approach for Hybrid Brain-Computer Interface // IEEE Access. 2020. Vol. 8. P. 89909–89918. doi: 10.1109/ACCESS.2020.2994226.
- Pichiorri F., Toppi J., de Seta V. [et al.]. Exploring high-density corticomuscular networks after stroke to enable a hybrid Brain-Computer Interface for hand motor rehabilitation // Journal of NeuroEngineering and Rehabilitation. 2023. Vol. 20(1). doi: 10.1186/s12984-023-01127-6.
- Si J., Yang Y., Xu L. [et al.]. Evaluation of residual cognition in patients with disorders of consciousness based on functional near-infrared spectroscopy // Neurophotonics. 2023. Vol. 10, no. 2. doi: 10.1117/1.nph.10.2.025003.
- Hamid H., Naseer N., Nazeer H. [et al.]. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks // Sensors. Vol. 22 (5). 1932. doi: 10.3390/s22051932, 2022.
- Mustafa A. H. H., Muhammad U. K., Deepti M. A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation // BioMed Research International. 2020. Vol. 2020. 1838140. 13 p. doi: 10.1155/2020/1838140.
- Sial M. B.,Wang S., Wang X. [et al.]. A Survey on EEG – fNIRS based Non-invasive hBCIs // 2021 International Conference on Artificial Intelligence (ICAI). 2021. P. 240–245. doi: 10.1109/ICAI52203.2021.9445246.
- Wang Z., Lu Y., Yijie Z. [et al.]. Incorporating EEG and fNIRS Patterns to Evaluate Cortical Excitability and MI-BCI Performance During Motor Training // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2023. Vol. 31. P. 2872–2882. doi: 10.1109/TNSRE.2023.3281855.
- Radha H. M., Karim A., Ali Al-Timemy H. University of Baghdad [et al.]. Recognition of Upper Limb Movements Based on Hybrid EEG and EMG Signals for Human-Robot Interaction // Iraqi Journal of Computer Communication Control and System Engineering. 2023. Vol. 23, no. 2. doi: 10.33103/uot.ijccce. 23.2.14.
- Lubo F., Haoyang L., Hongfei J. [et al.]. EEG-EMG analysis method in hybrid brain computer interface for hand rehabilitation training // Computing and Informatics. 2023. Vol. 42 (3). P. 741–761. doi: 10.31577/cai_2023_3_741.
- Kwon J., Shin J., Im C. H. Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels // PLoS One. 2020. Vol. 15, no. 3. doi: 10.1371/journal.pone.0230491.
- Beniczky S., Donald L. S. Electroencephalography: basic biophysical and technological aspects important for clinical applications // Epileptic Disord. 2020. Vol. 22, no. 6. doi: 10.1684/epd.2020.1217.
- Marius V. D., Hadăr A., Goga N. [et al.]. Design and implementation of an eeg-based bci prosthetic lower limb using raspberry PI 4 // U.P.B. Sci. Bull., Series C. 2023. Vol. 85, Issue. 3. P. 353–366.
- He L., Guo Sh., Bu D. [et al.]. Subject-Independent Estimation of Continuous Movements Using CNN-LSTM for a Home-Based Upper Limb Rehabilitation System // IEEE Robotics and Automation Letters. 2023. P. 1–8. doi: 10.1109/LRA.2023.3303701.
- Jin H. Li C., Sun L., Hu H. [et al.]. To classify two-dimensional motion state of step length and walking speed by applying cerebral hemoglobin information // 2017 10th International Conference on Human System Interactions (HSI). 2017. P. 216–222. doi: 10.1109/HSI.2017.8005032.
- Yang L., Song Y., Ma K. [et al.]. A novel motor imagery EEG decoding method based on feature separation // Journal of Neural Engineering. 2021. Vol. 18. 036022. doi: 10.1088/1741-2552/abe39b.
- Milanes D. H., Codorniu R. T., Baracaldo R. [et al.]. Shallow Convolutional Network Excel for Classifying Motor Imagery EEG in BCI Applications // IEEE Access. 2021. Vol. 9. P. 98275–98286. doi: 10.1109/ACCESS.2021.3091399.
- Aydin E. A. Subject-specific feature selection for near infrared spectroscopy based brain–computer interfaces // Computer Methods and Programs in Biomedicine. 2020. Vol. 195 (12). 105535. doi: 10.1016/j.cmpb.2020.105535.
- Bin Abdul Ghaffar M. S., Khan U. S., Naseer N. [et al.]. Improved Classification Accuracy of Four Class FNIRS-BCI // 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). 2020. P. 1–5. doi: 10.1109/ECAI50035.2020.9223258.
- Guo W. C., Zhang X., Liu H. [et al.]. Toward an enhanced human machine interface for upper-limb prosthesis control with combined EMG and NIRS signals // IEEE Trans. Human-Mach. Syst. 2017. Vol. 47, no. 4. P. 1–12. 564575. doi: 10.1109/THMS.2016.2641389.
- Lin J. F. L. Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children // Cerebral Cortex. 2023. Vol. 33 (7). P. 4116–4134. doi: 10.1093/cercor/bhac330.
- Maher A., Salankar N., Qaisar S. M. [et al.]. Hybrid EEG-fNIRS brain-computer interface based on the non-linear features extraction and stacking ensemble learning // Journal of Applied Biomedicine. 2023. Vol. 43 (1). P. 463–475. DOI: doi: 10.1016/j.bbe.2023.05.001.
- Liu Z., Shore J., Wang M. [et al.]. A systematic review on hybrid EEG/fNIRS in brain-computer interface // Biomed Signal Process Control. 2021. Vol. 68. 102595. doi: 10.1016/j.bspc.2021.102595.
- Xu T., Yang Y., Zhou Zh. [et al.]. Motor Imagery Decoding Enhancement Based on Hybrid EEG–fNIRS Signals // IEEE Access. 2023. Vol. 1(1). P. 1–12. doi: 10.1109/ACCESS.2023.3289709.
- Li R., Yang D., Fang F. [et al.]. Concurrent fNIRS and EEG for Brain Function Investigation: A Systematic, Methodology-Focused Review // Sensors. 2022. Vol. 22, no. 15. 5865. doi: 10.3390/s22155865.
- Chunfu L., Ruite G., Zhichuan T. [et al.]. Multi-channel FES gait rehabilitation assistance system based on adaptive sEMG modulation // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2023. Vol. 31. P. 3652–3663. doi: 10.1109/tnsre.2023.3313617.
- Song T., Yan Z., Guo S. [et al.]. Review of sEMG for Robot Control: Techniques and Applications // Applied Sciences. 2023. Vol. 13, no. 17. doi: 10.3390/app13179546.
- Radek M., Martina L., Michaela S. [et al.]. Advanced bioelectrical signal processing methods: Past, present, and future approach — Part III: Other biosignals // Sensors. 2021. Vol. 21 (18). 6064. doi: 10.3390/s21186064.
- Cheng X., Sie E. J., Boas D. A. [et al.]. Choosing an optimal wavelength to detect brain activity in functional near-infrared spectroscopy // Optics Letters. 2021. Vol. 46 (4). 924. doi: 10.1364/ol.418284.
- Kimoto H. F., Machida M. A wireless multi-layered EMG/MMG/NIRS sensor for muscular activity evaluation // Sensors. 2023. Vol. 23 (3). 1539. doi: 10.3390/s23031539.
- Giminiani R. D., Marco C., Marco F. [et al.]. Validation of fabric-based thigh-wearable EMG sensors and oximetry for monitoring quadricep activity during strength and endurance exercises // Sensors. 2020. Vol. 17. P. 1–13. 4664. doi: 10.3390/s20174664.
- Daniel N., Sybilski K., Kaczmarek W. [et al.]. Relationship between EMG and fNIRS during Dynamic Movements // Sensors. 2023. Vol. 23 (11). 5004. doi: 10.3390/s23115004.
- Atzori M., Gijsberts A., Castellini C. [et al.]. Electromyography data for non-invasive naturally-controlled robotic hand prostheses // Nature. 2014. Vol. 1. doi: 10.1038/sdata.2014.53.
- Dario F., Ning J., Hubertus R. [et al.]. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges // IEEE Trans. Neural Syst. Rehabil. Eng. 2014. Vol. 22, no. 4. P. 797–809. doi: 10.1109/TNSRE.2014.2305111.
- Arif A., Khan M., Kashif J. [et al.]. Hemodynamic response detection using integrated EEG–fNIRS-VPA for BCI // Computers, Materials and Continua. 2021. Vol. 70., no. 1. P. 535–555. doi: 10.32604/cmc.2022.018318.
- Kwak Y., Song W. J., Kim S. E. FGANet: FNIRS-Guided Attention Network for Hybrid EEG–fNIRS Brain-Computer Interfaces // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2022. Vol. 30. P. 329–339. doi: 10.1109/TNSRE.2022.3149899.
- Neelum Y. S., Zareena K., Usama S. [et al.]. Enhancing classification accuracy of transhumeral prosthesis: a hybrid sEMG and fNIRS approach // IEEE Access. 2021. Vol. 9. P. 113246–113257. doi: 10.1109/ACCESS.2021.3099973.
- Nsugbe E., Phillips C., Fraser M. F. [et al.]. Gesture recognition for transhumeral prosthesis control using EMG and NIR // IET Cyber-Systems and Robotics. 2020. Vol. 2, Issue 3. P. 122–131. doi: 10.1049/iet-csr.2020.0008.
- Xiang Z., Yao L., Wang X. [et al.]. A Survey on Deep Learning-based Non-Invasive Brain Signals: Recent Advances and New Frontiers // Journal of Neural Engineering. 2020. Vol. 18 (3). doi: 10.1088/1741-2552/abc902.
- Moufassih M., Tarahi O., Hamou S. [et al.]. Boosting motor imagery brain-computer interface classification using multiband and hybrid feature extraction // Multimedia Tools and Applications. 2023. Vol. 83 (16). P. 1–32. doi: 10.1007/s11042-023-17118-7.
- Shelishiyah R., Dharan M., Kumar T. [et al.]. Signal Processing for Hybrid BCI Signals // Journal of Physics Conference Series. 2022. Vol. 2318 (1). 012007. doi: 10.1088/1742-6596/2318/1/012007.
- Ali M. U., Kim K. S., Kallu K. D. [et al.]. OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface // Bioengineering. 2023. Vol. 10, no. 5. doi: 10.3390/bioengineering10050608.
- Brian F. S., Charles P., Christopher H. [et al.]. The evolution of neuromodulation for chronic stroke: From neuroplasticity mechanisms to brain-computer interfaces // Neurotherapeutics. 2024. Vol. 21, Issue 3. e00337. doi: 10.1016/j.neurot.2024.e00337.
- Na L., Rui Z., Bharath K. [et al.]. Non-invasive Techniques for Muscle Fatigue Monitoring: A Comprehensive Survey // ACM Computing Surveys. 2024. Vol. 56, Issue 9. 221. P. 1–40. doi: 10.1145/3648679.
- Samandari А. М. Functional near-infrared spectroscopy (fNIRS) as a hybrid system: a review // Modeling, Optimization and Information Technology. 2024. Vol. 12 (1). P. 1–18. doi: 10.26102/2310-6018/2024.44.1.005.
- Marinelli A., Canepa M., Domenico D. D. [et al.]. A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis // Neurocomputing. 2024. Vol. 569 (7). 127123. doi: 10.1016/j.neucom.2023.127123.
Дополнительные файлы
