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Annotation

Deep learning methods play a crucial role in enhancing the effectiveness of intrusion detection systems. This study
presents a comparative analysis of seven deep learning models, including autoencoders, restricted Boltzmann ma-
chines, deep belief networks, convolutional and recurrent neural networks, generative adversarial networks, and deep
neural networks. The primary focus is on accuracy, precision, and recall metrics, evaluated using the NSL-KDD
dataset. The analysis demonstrated the high effectiveness of recurrent neural networks, which achieved an accuracy
0f 99.79 %, precision of 99.67 %, and recall of 99.86 %.

The objective of the study: of this paper is to enhance the effectiveness of intrusion detection systems through
a comparative analysis of the performance of various deep learning models and an assessment of their applicability
in the context of dynamic network security threats.

The proposed solution involves a comparative analysis of seven deep learning models to identify the most effective
ones for network security tasks. This analysis aids in selecting the optimal models for specific security requirements.
The evaluation methodology involves the use of the benchmark dataset NSL-KDD, which contains various types of
attacks and normal connections. The key evaluation metrics are accuracy, precision, and recall.

The system implementation is based on deep learning frameworks such as TensorFlow. The results of the system’s
performance and their interpretation are presented in the paper.

Experiments with the NSL-KDD dataset demonstrated accuracy, precision, and recall for all the deep learning models
considered.

The scientific novelty is the ability to obtain formal performance evaluations of various deep learning models for
intrusion detection systems, taking into account their architectural features, the processing of temporal and spatial
data, as well as the characteristics of network traffic and attack types.

The theoretical significance is the expansion of methods for evaluating the effectiveness of intrusion detection sys-
tems through the analysis and comparison of the performance of deep learning models in the context of processing
complex and high-dimensional network data.

The practical significance is the application of the comparative analysis results for selecting the most effective so-
lutions in intrusion detection systems and optimizing them for real-world operating conditions.
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AHHoOTanms

Memodbl 2/1y60K020 06y4eHus1 Uuzparm KaAw4es8yr poJib 8 nosvluieHuu 3g@dekmusHocmu cucmem obHaApyHceHus
emopaiceHull. B pabome npogsedeH cpagHumenbHblll aHaau3 cemu Mmodesell 24y60K020 06y4eHuUsl, 8KA04AS d8MO3H-
Kodepbl, 02paHu4eHHble MauuHbl bo1bymana, cemu 21y60k020 y6excdeHus, ceepmoyHble U peKyppeHmHble HellpoH-
Hble cemu, 2eHepamueHo-cocms3amesibHble cemu U 2/1y60kue HelipoHHble cemu. OCHO8HOe BHUMAHUE y0e1eHo Mem-
PUKAM MOYHOCMU, Npeyu3uoHHOCMU U NoAHOMbl Ha ocHoge damacema NSL-KDD. AHasiu3 nokas3as 8bICOKYH 3¢h-
dekmusHoCMb peKyppeHmMHbIX HelUpOoHHbIX cemel, docmuawiux moyHocmu 99,79 %, npeyuzuoHHocmu 99,67 %
u nosaHomoul 99,86 %. lleab cmamwbu — nosviuieHue 3PHeKmu8HOCMU CUCMEM 0OHAPYIHCEHUS] 8MOPHCEHUTl Yepe3
CpasHUME/IbHLIU AHA/U3 NPOU3BOJUMEALHOCMU PA3AUYHBIX Modeell 21y60K020 06y4YeHUsl U OYeHKY UX NPUMeHU-
MOCMU 8 Yc/108Us1X AUHAMUYHbIX Y2P03 cemesoli 6e3onacHocmu.

Ilpedaazaemoe peweHue cocmoum 8 cpagHUMeEAbHOM AHAU3e cemMU Modesell 21y60Kk020 06y4eHUs], Y¥mobbl 8bl-
s8umsb Haubosee sgpekmueaHbsle 0151 3ada4 3awumsel cemu. [JaHHbIT AHAU3 NOMOz2dem 8blI6pAMb ONMUMA/IbHbIE
Modeau 0151 KOHKpemHbIX ycaosuli 6ezonacHocmu. Memooduka oyeHKU 8K/1104daem Ucno/ab308aHUE IMAI0HHO20
Habopa daHHbix NSL-KDD, komopblii codepicum pa3/uyHble munsl amak U HOpMA/AbHbIX coeduHeHull. Katoueable
MempuKU OYeHKU — MOYHOCMb, Npeyu3uoHHoCmb U noaHoma. Peaauzayus cucmemv! 8bino/HEHa HA OCHOg8e
Ppelimeopkos 21y60k020 06y4ueHus, makux kak TensorFlow. 3kcnepumenmul ¢ Habopom daHHbix NSL-KDD noka-
3a/1U MOYHOCMb, NPEYU3UOHHOCMb U NOJAHOMY 0/151 8CeX pACCMOMPEHHbIX Modeell 21y60Kk020 06yYeHUsl.

Hay4yHass HOBU3HA 3aK/AK0YAEMCS 8 803MONCHOCMU NoJAy4eHUs1 hoOpMANbHbIX OYeHOK NPpou38odumesbHOCMuU pas-
JIUYHBIX Modesiell 21y60K020 06y4eHUst 04151 CUCeM 06HAPYHCeHUSs BMOPHCEHUT, C yUemoM UX apXumeKmypHbiX 0CO-
6eHHOCMell, 06pa6oMKU 8peMeHHbIX U NPOCMPAHCIMBEHHbIX JAHHbIX, d MAKJ}¥ce XapaKkmepucmuk cemegozo mpa-
duka u munos amax.

Teopemuueckasi 3HAUUMOCMb 3AKA04AEMCsl 8 pacWupeHuU Memodos oyeHKU 3gdpekmusHocmu cucmem 06HApY-
JICeHUsl 8MOPACEHUL] NymeM aHAAU3d U CPABHEHUs Npou3godumesibHocmu modeeli 21y60K020 06y4YeHUsl 8 YCA08USIX
06paboMKU C/A0XHCHBIX U BbICOKOPA3MEPHDBIX CeMmMeablX JaHHbBIX.

IIpakmuyeckaa 3HAYUMOCMb 3aKJAI04AEMCS 8 NPUMEHEHUU pe3y/1bmamos CpasHUMebHO20 AHAAU3A 0151 8bl-
6opa Haubo/1ee 3P HeKkMmuBHbIX pelleHUll 8 CUCeMax 06HAPYHCEHUS BMOPHCEHUT U UX ONMUMUZAYUU 0151 PEATbHbIX
ycao08uil akcnayamayuu.

KiroueBble coBa: 2/1y60koe o6yveHue, cucmembvl OGHAPYICEHUSI 8MOPINHCEHUL, ABMOIHKOOEpbl, 02pAHUYEHHble
MawuHbl Bosvymana, cemu 2ay6okux yoesxcdeHutl, ceepmoyHble HelipoHHble cemu, peKyppeHmHble HellpOHHble cemu,
2eHepamusHo-cocmsi3ameJibHble cemu, cemesasi 6e30NACHOCMb
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1. INTRODUCTION

Deep learning is widely used in computer or network
security and we can define it as a type of machine learn-
ing methods based on artificial neural networks and the
idea oflearning representations. The term "deep"” comes
from the multilayered structure of the network. In gen-
eral, deep learning models are of several types, includ-
ing DNNs [1], CNNs [2], DBNs [3], and RNNs [4], which
have been categorized under the different exemplars of
the supervised learning model. Concurrently, restricted
Boltzmann machines (RBMs) [5], autoencoders (AEs)
[5,6], and generative adversarial networks (GANs) [7]
are some of the models that can be used for unsuper-
vised learning. In deep learning, features can be auto-
matically extracted from raw data, like images and text
and analyses the data [8, 9], this capability is particu-
larly useful in intrusion detection systems, where deep

learning models can process complex and high-dimen-
sional data to identify potential threats [9, 10], so fea-
ture engineering by hand is not necessary. This skill al-
lows the use of deep models on many kinds of data and
gives it a considerable advantage over shallow models,
mainly in dealing with vast datasets [11]. Deep learning
techniques may be applied in the anomaly detection
field for dimensionality reduction and classification
tasks. Handcrafted feature engineering becomes insuffi-
cient for the increasingly larger, high-dimensional da-
tasets; instead, deep learning models have been able to
automatically capture complicated knowledge in these
forms of data. At the same time, they may adapt to net-
work behavior and dynamically varying attributes in at-
tack scenarios [12]. Figure 1 shows the basic architec-
ture for a deep learning-based IDS.
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Fig. 1. Architecture of Deep Learning Based Intrusion Detection System

The use of deep learning techniques requires large
and intensive computational resources during the
training phase, involving many hidden layers with
many elements, leading to high computational com-
plexity. However, deep learning algorithms naturally
involve large-scale matrix multiplication thanks to the
development of modern processing technologies. In re-
cent years, fast advancements in processing technolo-
gies enabled the improved availability of graphics pro-
cessing units (GPUs) and artificial intelligence (AI) ac-
celerators. Integration of these technologies into mo-
bile devices and Internet of Things (IoT) devices has
made it possible to deploy deep learning models on re-
source-constrained environments.

2. DEEP LEARNING MODELS

Deep learning models can be classified in to super-
vised learning, unsupervised learning and simi- super-
vised learning [13].

2.1. Supervised Learning
2.1.1. Autoencoder

An autoencoder is a specialized neural network ar-
chitecture comprising two principal components the
encoder and the decoder [14]. As illustrated in Figure 2,
the encoder is responsible for extracting important fea-
tures from the input data, while the decoder recon-
structs the original data using these extracted features.
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Fig. 2. Structural Model of the Auto-Encoder

This method is fundamentally similar to the tradi-
tional autoencoder framework [5, 15, 16], though it op-
erates in a supervised manner. Throughout the training
process, the gap between the encoder’s input and the
decoder’s output narrows progressively, indicating
that the features learned by the encoder accurately cap-
ture the significant information embedded in the origi-
nal data, as evidenced by the decoder’s ability to recon-
struct the input data from these features. The encoder
functions as a neural network with one or more hidden
layers [14]. It transforms the input data, often noisy,
into a compressed representation, or latent space,
which contains fewer dimensions than the input data.
This compression is achieved through the following
equation:

h = fag(m) + WepeM + by, (1)

where m represents the input data; W,,. is the en-
coder’s weight matrix; b,;. is the bias vector; h is the
encoded representation. The function f,; applies an ac-
tivation function, such as ReLU or sigmoid, to the linear
transformation of the input. The decoder is responsible
for reconstructing the original data from the com-
pressed encoding. It receives the encoded data h from
the encoder and produces an approximation of the orig-
inal input data.

The decoding process is mathematically defined as:
M = gap(h) + Waech + bgse, (2)

where 7 is the reconstructed input data; W,is the de-
coder’s weight matrix; bg;,. is the corresponding bias
vector. The function g5 applies an activation function
to the decoder’s output. The training objective is to
minimize the loss function, which consists of several
terms: the reconstruction error, weight regularization,
and a sparsity constraint.

The reconstruction error is the mean squared differ-
ence between the original input data m; and its recon-
structed counterpart m;:

Ntrain Npara

1
=N Z Z (my; — mij)z' (3)
train j=1

i=1

LTECOTL

where N4 is the number of training samples; Npg,q
is the number of parameters (or features) per sample.

Additionally, weight regularization Q,, is employed
to prevent overfitting by penalizing excessively large
weights:

NtrainNPU-TU-
1
W=z, 2, " ®
i=1 j=1

The sparsity constraint )5 encourages the model to
activate only a small subset of the hidden units, thus
promoting efficient learning. It is defined as:

Nnode

> plog(£)+a-plog(;=5),  ©

Q =

where p is the desired average activation for the spar-
sity constraint; g, is the actual activation of the k — th
hidden unit.

The average activation pjis computed as the mean
activation across the training samples:

Ntrain

ky(m;), (6)

i=1

Pr Ntrain

where kj,(m;) is the activation function of the k — th
hidden unit for the i — th training sample, the total loss
function £ to be minimized is the sum of the recon-
struction error, weight regularization, and sparsity
constraint:

L= Lyecon + Ay + B, (7)

where A and {3 are regularization parameters that con-
trol the importance of the weight regularization and
sparsity terms, respectively. By comparing the recon-
struction error for new input data, the trained autoen-
coder widely used for anomaly detection (IDS).By com-
paring the reconstruction error for fresh input data m
to a predetermined threshold, the trained autoencoder
may be utilized for anomaly detection (IDS). The input
is deemed abnormal if the reconstruction error is
greater than this cutoff.

This is how the reconstruction error is calculated:
error = ||lm — m||. (8)

This ability to reconstruct normal data patterns and
detect deviations makes the autoencoder a good tool
for identifying anomalous activities in IDS applications.
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According to [14] Autoencoder can process two
main categories of attack kinds are assault and regular.
There are around 38 subclasses for the attacks. The
class is transformed into a binary class for normal and
attack because of numerous distinct attack kinds and

feature sets. Evaluation metrics are utilized to evaluate
this data. Next, we will adjust our dense autoencoder
for this model. Figure 3 showing the evaluation metrics,
ROC curve, and confusion matrix look like this with us-
ing NSL-KDD dataset.

m Performance

0,996
0,994
0,992

0,99
0,988
0,986
0,984
0,982

0,98

0,978 .
Precision

0,984

Accuracy

Performance 0,994

F1-score Recall
0,989 0,991

Fig. 3. Autoencoder Evaluation Metrics Using NSL-KDD Dataset [14]

2.1.2. Restricted Boltzmann Machine (RBM)

A Restricted Boltzmann Machine (RBM) is a stochas-
tic neural network widely used in intrusion detection
systems (IDS) for its ability to extract features from
complex network data and detect anomalies [5]. It con-
sists of a visible layer V that represents the input data
and a hidden layer H that encodes latent features [17]
Figure 4 showing Structural model of the RBM.

\

Hidden I
layer H |
7

\

visble |
layer V |
/

Fig. 4. Structural Model of the Restricted Boltzmann Machine (RBM)

The layers are fully connected to each other, but
there are no connections within a single layer [17].
RBMs do not distinguish between forward and back-
ward directions, making the weights symmetric. This
property is critical for training RBMs effectively using
contrastive divergence. The energy function of the RBM
is defined as:

N M
E(@,h) = — z a;@; — Z bjh; — Z Qihwy;. (9)
i-1 j-1 i,j

During training, the probability of activating a hid-
den unit given the visible units is computed as:

n
P(h) =0 (bi £y <p,-wi,->, (10)
i=1
where o(x) is the sigmoid activation function:
1
o(x) = m. (11

To reconstruct the visible layer, the conditional
probability for each visible unit given the hidden units
is calculated as:

m
P((pl) =0\l q + z h]WU . (12)
j=1

The RBM is trained by minimizing the difference be-
tween the data and its reconstruction [18].

Weight updates are calculated using the contrastive
divergence algorithm:

8Wij = €((‘pihj)data - (‘pihj)model), (13)

where € is the learning rate; (@;h;)4q¢q represents the
expectation over the training data; (@;h;)moqer repre-
sents the expectation over the model distribution.

Bias updates for the visible and hidden layers are de-
fined as:

8a; = e({@)aata — (@idrecon)s
Sbj = e((hj>data - (hj>recon)-

A sparsity constraint is often introduced to enforce
meaningful feature extraction. The sparsity penalty is:

M
_ p 1-p
Q = ; [p log (E) +(1-p) 10g<1 — ﬁj)]' (16)

(14)
(15)
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where the average activation of a hidden unit is:

N
1
pj = NZ P(1]¢;).
i=

The reconstruction error, typically measured as the
mean squared error (MSE), is minimized during train-
ing to enhance model performance:

1 N M
MSE = NZ Z((pi]- - (pij,recon)z,

i=1j=1

(17)

(18)

these equations and principles allow the RBM to effec-
tively model normal network behavior while identify-
ing deviations that signify potential intrusions. Accord-
ing to [19] Experiment was performed by only adjust-
ing the size of training data on the model set with the
batch data of 10 and the learning rate of 0.01 showing
the top performance in the above trial. Figure 5 show-
ing Accuracy, Precision, Recall and F-measure with
batch size = 10 and learning rate = 0.1 using NSL-KDD
dataset.

1 m Performance

0,995
0,99
0,985
0,98
0,975
0,97

0,965
Accuracy
0,994

Performance 0,993

Precision

Recall
0,9845

F1-score
0,976

Fig. 5. RBM Evaluation Metrics Using NSL-KDD Dataset [19]

2.1.3. Deep Belief Networks (DBNs)

Deep Belief Networks (DBNs) are highly effective
tools for Intrusion Detection Systems (IDS). A DBN is
constructed by stacking multiple Restricted Boltzmann
Machines (RBMs), where the output of one layer serves
as the input to the next. As shown in Figure 6, the DBN
architecture consists of an input layer, multiple hidden
layers, and a softmax layer at the top for classification.

‘ ! ‘

"Hidden 'Hidden | ‘'Hidden | Output

layer layer 1 layer2 | layer3 layer
TRBMA1 0 oo oL ] :
RBMZ — ““mpmz T

Fig. 6. Structural Model of the DBNs

The DBN is trained in a layer-wise manner using the
following principles: First, in unsupervised pretraining,
each RBM in the DBN is trained individually [3, 20]. The
energy function of an RBM is defined as:

N M N M
E(wh) = — Z av; — Z bh; — Z z vhwj, (19)
=1

i=1 i=1j=1

where v and h represent the visible and hidden layers,
respectively a; and b; are their biases, and w;; are the
weights connecting the layers. During training, the
probability of hidden units and visible units being acti-
vated is calculated as:

P(hl) =0 (b] + Z viWij>J (20)
i
P(Ui) =0 a]- + Z h]WU ) (21)
j
where o(x) is the sigmoid activation function:
o(x) = (22)

1+e*

After unsupervised pretraining, the entire DBN is
fine-tuned using supervised learning, which involves
minimizing a loss function, such as cross-entropy for
classification tasks, and optimizing the weights and bi-
ases across all layers [3, 20]. For final classification in
IDS, a softmax layer is added at the top of the DBN.

The probability of class k is given by:
exp(zx)

POIKIR) = G,
f1exp(2)

(23)

where z, represents the activation of the k — th neu-
ron in the softmax layer. This hierarchical approach al-
lows DBNs to extract meaningful features from raw
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data and enhance detection performance, making them
well-suited for IDS applications. By combining unsu-
pervised feature learning and supervised classification,
DBNs improve the ability to detect and classify intru-
sions effectively.

According to [21] DBNs integrate feature extraction
and classification modules into a system that can auto-
matically extract features and classify them. This is an
effective way to improve the detection performance.
Figure 7 showing the classification performance of DBN
was evaluated on the NSL-KDD.

1,2 m Performance

0,8
0,6
04
0,2

0

Accuracy

Performance 0,8082 0,9684

Precision

F1-score Recall
0,8026 0,6853

Fig. 7. DBM Evaluation Metrics Using NSL-KDD Dataset [21]

2.1.4. Recurrent Neural Networks (RNN)

RNN Conventional systems frequently depended on
streamlined encoding techniques, including one-hot
encoding [22]. Nevertheless, one-hot encoding's inca-
pacity to accurately capture semantic similarities be-
tween features is a major drawback. Researchers are
using LSTM networks to tackle this problem [23]. Long-
term selective retention of pertinent information is
made easier by LSTM networks, which incorporate
memory cells and control mechanisms to manage infor-
mation flow. Additionally, because RNN-LSTM can cap-
ture long-term dependencies, the model can identify
subtle deviations that may be signs of intrusions the
network is recurrent sequential analysis is made possi-
ble, which is crucial for comprehending the temporal
dynamics of network behavior [23]. The architecture
allows IDS-RNN model to adaptively learn from histor-
ical data, improving detection accuracy over time, IDS-
RNN model is fully capable of detecting intrusions in
dynamic network environments. In RNN architecture
hidden layers have a simple structure (e.g. single tanh
layer), while the LSTM architecture is more complex, It
is constituted of 4 hidden layers (Figure 8) [24] show-
ing LTMS unit and RNN unit.

To add or remove information from the cell state, the
gates are used to protect it, using sigmoid function (one
means allows the modification, while a value of zero
means denies the modification).

We can identify three different gates.

1) Input/Update gate layer (Figure 8): which con-
trols how information enters the memory cell, is the
key component of the LSTM. The computation of the in-
put gate involves the current input x and the previous
hidden state h;_;:

¢, = tanh(W,x, + U h,_q + b.), (24)

where W, and U, are weight matrices; b, represents
the bias parameter. The function, tanh denotes the hy-
perbolic tangent activation function.

LTMS Unite Q

@

RNN Unite X

~
%

gl
iR

v
@

tanh

Fig. 8. LTMS Unit and RNN Unit

®

2) Forget gate layer (Figure 8): The forget gate is a
crucial part that works in tandem with the input gate to
filter out old data from the memory cell. This gate is
controlled by the sigmoid activation function, and its
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operation at time t is represented by the following
equation:

fe = o(Wyx, + Ughy—y + by). (25)

3) Output gate Layer (Figure 8): The output gate
serves as the last arbiter in the intrusion detection sys-
tem (IDS) its decides what will be our output by execut-
ing a sigmoid function that decides which part of the
cell LSTM is going to output, the result is passed
through a tanh layer (value between - 1 and 1) to out-
put only the information we decide to pass to the next
neuron. The output gate helps the RNN-LSTM-based
IDS to deliver actionable information to security ana-
lysts or supporting systems by selectively broadcasting
pertinent signals, allowing prompt reactions to abnor-
malities and possible security breaches [25].

Mathematically, the output gate o, at the time ¢ is
represented by the equation:

Ot = G(VVoxt + Uohf—l + ét)r (26)

according to [24] the performance model of RNN, a se-
ries of experiments were conducted using varying hid-
den layer sizes. The highest accuracy was achieved with

0,999
0,9985
0,998
0,9975
0,997
0,9965
0,996

0,9955
' Accuracy
0,9979

Performance 0,9967

Precision

a hidden layer size of 100, and based on this, the hyper-
parameters were set for further model training. The
model was implemented on an intrusion detection sys-
tem (IDS) using the NSL-KDD dataset Figure 9 showing
the classification performance of RNN was evaluated on
the NSL-KDD dataset.

2.2. Unsupervised Learning
2.2.1. Deep Neural Network (DNN)

A Deep Neural Network (DNN) is a kind of neural
network that has many layers which are set up in a
feedforward topology [26]. It is made up of the input
layer, several hidden layers, and the output layer. DNN
operates in a unidirectional manner unlike recurrent
neural networks, where data will move from the input
nodes, through the hidden nodes to the output nodes,
in the edge-weighted DAG without any loops or cycles.
Each neuron in a layer is connected directly with the
neurons in the subsequent layers. In the training pro-
cess, the network's weights are adjusted through back-
propagation method [27] Figure 10 illustrates the
structure of a DNN.

m Performance

Recall
0,9986

F1-score
0,9982

Fig. 9. RNN Evaluation Metrics Using NSL-KDD Dataset [24]
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Fig. 10. The Structure of DNN
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DNN famous for two main reasons [24, 27]:

1) they deliver a close to 100% accurate approxima-
tion of complex multidimensional and nonlinear func-
tions built directly from the input data;

2) they are the foundation of the strong approxima-
tion theory which is adapted to a much wider list of nat-
ural and artificial occurring phenomena.

The training process of a DNN involves minimizing a
cost function that measures the discrepancy between
the network's predicted output and the actual output.

The cost function, denoted as C(W, %, y) is typically
defined as the mean squared error between the pre-
dicted output h,, (¥) and the true output y:

— - 1 - 2
Cw,%,y) = 7 llhw(X) = yII%, (27)
where w represents the weights of the network X is the
input vector to regularize the model and prevent over-

fitting, a regularization term is added to the cost func-
tion.

The regularized cost function C(wX) is expressed as
follows:

where N represents the number of data points in the
training set; A is the regularization parameter; wikj de-
notes the weights between the neurons in layers m and
m + 1 at the k — th layer. During the training process,
the weights of the network are updated iteratively us-
ing gradient descent.

The weight update rule is given by:

0 L,
wi =wl1+ EWC(W)' (29)
ij

k
ij

where § is the learning rate, and the update is based on
the gradient of the cost function with respect to the
weights, which guides the network towards minimizing
the cost.

According to [28], the proposed model uses DNN to
classify network traffic as either normal or attack. Due
to the complexity of attack types, the model simplifies
detection by grouping attacks into a binary classifica-
tion. Evaluation metrics, including the ROC curve and
confusion matrix shown in Figure 11, are used to assess
performance on the NSL-KDD dataset. The DNN em-
ploys ReLU activation in hidden layers and Softmax ac-

k LmL A : -
. | S o~ 2 tivation in the output layer, ensuring efficient and accu-
cw) = NC(W; xy™) + EZ Z (Wij » (28)  rate intrusion detection.
K i j
0,96 m Performance

0,95

Accuracy

Performance 0,9553

0,94

0,93

0,92

0,91 I
0,9

Precision
0,9465

Recall
0,9192

F1-score
0,9243

Fig. 11. DNN Evaluation Metrics Using NSL-KDD Dataset [28]

2.2.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are power-
ful systems that mimic the characteristics of the human
visual system (HVS) and have led to significant break-
throughs in the field of computer vision [29, 30]. CNNs
have become some of the most advanced algorithms in
image recognition, object detection, and classification
tasks, drawing inspiration from natural vision mecha-
nisms. A typical CNN architecture, as shown in Figure 12,
consists of multiple layers arranged in a sequence.
These layers include convolutional layers, pooling lay-
ers, and fully connected layers.

The convolutional layers are the first to process the

input data, where they apply a set of filters to extract
fundamental features such as patterns and spatial rela-

tionships. These filters create feature maps that high-
light important areas of the image, allowing the net-
work to focus on key patterns [31].

The convolution operation itself is expressed as:
FX,W) =Y, (30)

where X is the input data; W represents the convolu-
tional filter weights; Y is the output feature map. In a
convolutional layer, the activation of a feature map at
position (i, j) is calculated using the following formula:

where a;;is the activated value at position (i, j); o is the
activation function (such as ReLU), and b is the bias
term.
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Fig. 12. CNN Architecture

The output of the convolution operation for a feature
map C} inlayer [ is computed by applying the filter k}, ;
to the input feature map S,ﬁ‘l from the previous layer,
along with a bias term b}:

n
1 - 1 1
Cy= < S, 1>kkp,q+bq>.
p=1

To handle spatial shifts in the input data, this convo-
lution operation can be extended as:

n X X
Cé:(Z Z Z Syt (i —u,j—v)
p=1 u=-x v=—x

X kb, (u,v) + bé).

(32)

(33)

After applying the convolution operation, pooling
layers are used to reduce the spatial dimensions of the
feature maps. For example, the output Sé (i,j) of apool-
ing layer can be computed as:

1 z z
) :—Z Z ClRi-w2j-v). (34
4 u=0 v=0

Once the convolutional and pooling layers have pro-
cessed the input, the network typically uses fully con-
nected layers for the final prediction. The output $(i)
for each class is obtained using the softmax function,
which normalizes the raw output scores:

eoutput

9O = Sy (35)

The objective during training is to minimize the loss
function, which measures the difference between the
predicted output $(i) and the true output y(i).

The loss function is often represented as:
trainin
1 g

L=3 ). 7 (50 ~y)"

(36)

The weights of the network are updated using the
gradient of the loss with respect to each weight:

oL oL 39

WD =swan = mGy OV
Expanding the derivative:
. oy . oL
AW (i, j) = (}’(l) - J’(l))-m X
' (38)

nodes
x <0 (Z,-=1 W, )« f(G) + b(i)>>.

Additionally, the derivative of the output y(i) with
respect to the loss is:

A9() = (9@ = y(®). 3O (1 - 5().
These gradients are used to update the weights

through an optimization technique like stochastic gra-
dient descent (SGD).

According to [32] the experimental results on the
NSL-KDD dataset showing in Figure 13.

(39)
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Fig. 13. CNN Evaluation Metrics Using NSL-KDD Dataset [32]
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2.3. Sim-Supervised Learning
2.3.1. Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) have
gained significant attention in various application do-
mains, with anomaly detection being one of the most
prominent [33]. The ability of GANs to learn complex
representations and generate data that appears realis-
tic makes them highly effective for anomaly detection
tasks. These networks are trained using a data distribu-
tion approach in an unsupervised manner, allowing
them to detect irregularities without requiring labeled
datasets [33], Figure 14 showing GANs architecture.

Mathematically, the operation of GANs can be de-
scribed using the divergence function:

Dy (PaacallP) = f ()f( d;tg())>dx, (40)

where f(1) = 0 indicates that P, and P4, are equiva-
lent. In the origin of GAN, the Jensen-Shannon JS diver-
gence was adopted as f:

f() =tlog(t) — (t + 1) log(t + 1). 41

This function measures the discrepancy between the
real data distribution P,,;, and the generator's distri-

bution P, quantifying how closely the generated data
approximates the real data [34].

Another crucial metric in GANs is the Jensen-Shan-
non Divergence /S defined as:

1 1
]S(Pdata”Rg) = EKL(Pdata”Pm) + E(Ps”Pm).

where:

(42)

1
m = E (Pdata”Rg)- (43)
The JS divergence evaluates the similarity between
Pgqta and F; with lower values indicating a better
match. This property makes GANs particularly well-
suited for distinguishing anomalies, as deviations from
the expected distribution can be easily detected.

The core of GAN functionality lies in the minimax op-
timization framework (44), where D (x) is the discrim-
inator function (45), which assigns a higher probability
to real samples. The generator seeks to minimize the

term log(l — D(G(z))) improving its ability to pro-
duce realistic data. Further refinement involves the op-

timization objectives for the discriminator (46) and
generator (47).

Origin
Samples ()
( Imbalanced
Data Filter Dense Layers
Dense Convolutional Dense N
Layers Layers Layers Sigmoid
(x\y)
.\.— —_— s e e
[G(X,’ y')’ yl]
Gaussian
Noise Discriminator (D)
Generator (G) D(X,y')
D(G(x,y).Y)
Fig. 14. GANs Architecture
. . ]ExNPdata(x) [log D (x)]
min max min max

c p V@O =", FTE2-Pyarae (44)

[log (1 — D(G (Z)))]

Pdata (x)
D(x) = :

Pdata (x) + Pg(x) (45)

maxV(D) _ max 1 - < logD (%, v,) + )
0 6, m£i\log(1 ~ D(G(z,9)7))) (46)
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m

The probabilistic classification in GANs can be mod-
eled as:

Ut

thev ev-[’

where the probability of a sample belonging to a partic-
ular class is determined by the class scores. These

P(yla) = P(y = Ci|v) = (48)

g % 1 i
9‘6“ P(D) = neliXEZ(k’g(l — DG (2 9)7))-

(47)

mathematical foundations enable GANs to perform ef-
fectively in anomaly detection, making them invaluable
for applications like fraud detection, network intrusion
detection, and industrial fault diagnosis. According to
[33] showing the evaluation of the metrics GAN using
NSL-KDD (Figure 15).
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0,8417

Fig. 15. GAN Evaluation Metrics Using NSL-KDD Dataset [33]

3. RESULTS AND DISCUSSIONS

In order to evaluate the deep learning models dis-
cussed, this study utilized the NSL-KDD dataset, which
comprises 41 features and 125,973 instances catego-
rized into normal and four attack types: DoS, Probe,
R2L, and U2R. Various deep learning models — Autoen-
coders, Restricted Boltzmann Machines (RBMs), Deep
Belief Networks (DBNs), Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs),
Deep Neural Networks (DNNs), and Generative Adver-
sarial Networks (GANs — were implemented and tested
to assess their effectiveness in intrusion detection. The
results showed varying performance across the models
based on evaluation metrics, as seeing in Figures (3, 5,
7,9,11,13,15).

Among the tested models, RNNs achieved the highest
accuracy (99.79 %), precision (99.67 %), and recall
(99.86 %), demonstrating their effectiveness in detect-
ing temporal patterns in network traffic. Autoencoders
and RBMs also performed well, with accuracy metrics
of 99.4 %. However, DBNs exhibited lower accuracy
(80.82 %) and recall (68.53 %), suggesting limitations
in handling complex datasets. CNNs and GANs showed
promising results but lagged behind RNNs in overall
performance metrics. DNNs provided a balanced per-
formance, achieving high accuracy (95.53 %) and pre-
cision (94.65 %).Figures illustrating these results em-
phasize the superiority of RNNs and the suitability of
Autoencoders and RBMs for intrusion detection tasks.

The findings also align with prior studies, underscoring
the importance of selecting appropriate models based
on the specific requirements of IDS applications and the
characteristics of available datasets.

4 CONCLUSIONS

The findings of this study emphasize the transform-
ative impact of deep learning on intrusion detection
systems. By leveraging advanced neural network archi-
tectures, IDS can achieve superior performance in de-
tecting and responding to cyber threats. Models like au-
toencoders and RBMs enable efficient anomaly detec-
tion through automatic feature learning, while DBNs,
RNNs, and CNNs provide enhanced capabilities for pro-
cessing temporal and spatial data patterns. The integra-
tion of these models has demonstrated significant im-
provements in accuracy, precision, and recall metrics,
as evidenced by evaluations on the NSL-KDD dataset.
While computational complexity remains a challenge,
recent advancements in hardware technologies, such
as GPUs and Al accelerators, have made it feasible to
implement deep learning-based IDS in resource-con-
strained environments. Future research should focus
on improving model scalability, reducing computa-
tional demands, and adapting to the ever-changing
landscape of network security threats. These advance-
ments will be crucial for developing IDS that are both
effective and practical across diverse applications.
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