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Abstract – Background. QS are the main mathematical tool for modelling data transmission systems, which are not without 
reason called queuing networks. The need to regulate such characteristics of mass service systems as waiting time in a queue or 
queue length is due to the improvement of the quality of operation of data transmission systems. The ability to regulate these 
characteristics allows minimising the waiting time in the queue in the buffers of transmitting devices, as well as the volumes 
of buffer memory itself. To demonstrate this possibility, the paper examines queuing systems formed by both conventional 
distribution laws in the form of probability mixtures and time-shifted distribution laws. Aim. In this work, the hyperexponential 
and hyper-Erlangian distributions of the second order were chosen as components of the QS. Based on these distribution laws, 
numerical-analytical models were constructed for two queuing systems with normal and shifted distribution laws, with the 
derivation of a solution for the main characteristic of the queuing system – the average waiting time in the queue. As is known, 
the remaining characteristics of the QS are derivatives of the average waiting time. Methods. The paper uses a shift of the 
distribution laws to the right from the zero point. To derive a solution for the average waiting time in a queue, the classical 
method of spectral solution of the Lindley integral equation is used based on the Laplace transform of the distribution laws 
that form the considered QS. The obtained calculation formulas for the average waiting time in a queue allow us to calculate the 
characteristics of such systems for a wide range of changes in teletrafic parameters. Results. The obtained results can be used in 
modern teletrafic theory in the design and modelling of various promising data transmission systems, including the volumes of 
buffer memory of transmitting devices. Conclusion. The shift of the distribution laws in time leads to a decrease in their variation 
coefficients. Due to the quadratic dependence of the average waiting time on the variation coefficients of the arrival and service 
time intervals, a noticeable decrease in the average waiting time follows in systems with time shifts.

Keywords – ordinary and shifted hyper exponential and hyper-Erlang distribution laws; Lindley integral equation; spectral 
decomposition method; Laplace transform.
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Introduction

The spectral solution method of Lindley’s inte-
gral equation plays an important role in the study of 
G/G/1 systems. This method is most accessible in spe-
cific examples presented in the classics of queueing 
theory [1].

This article is devoted to the analysis of QS 
H2/HE2/1, formed by two flows described by ordinary 
and right-shifted from the zero point density func-
tions of hyperexponential and hyper-Erlangian dis-
tribution laws of the second order.

In their early works, the authors clearly show that 
in systems formed by shifted distribution laws, the 
average waiting time becomes shorter than in con-
ventional systems with the same load factor. This is 
achieved by the fact that the coefficients of variation 
of arrival times cλ and service times cμ for shifted dis-
tribution laws become smaller when the shift param-
eter t0 > 0 is introduced. Thus, the distribution shift 
operation transforms conventional Markovian queu-
ing systems into a non-Markovian G/G/1 system.

The results of works [2–4] in the field of QS with 
shifted distributions, together with [1], made it pos-
sible to develop a method of spectral decomposition 
of the solution of Lindley’s integral equation for the 
considered systems H2/HE2/1.

In queuing theory, studies of G/G/1 systems are 
relevant because they are actively used in modern 
teletrafic theory, and moreover, it is impossible to 
obtain solutions for such systems in finite form for 
the general case. The spectral decomposition method 
for solving Lindley’s integral equation plays an im-
portant role in the study of G/G/1 systems, and most 
of the results in queueing theory have been obtained 
using this method.

One form of Lindley’s integral equation looks like 
this [1]:
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where W(y) is the probability distribution function 
(PDF) of the waiting time for a request in a queue;

( ) ( )C u P u u= <  is the PDF of the random variable
,u x t= −   , where, in turn, x  is the random service 

time for a request; t  is the random variable repre-
senting the time interval between requests.

In this brief description of the method for solving 
Lindley’s equation, we will adhere to the approach 
and notation used by the author [1]. To do this, we will 
denote the Laplace transforms of the density func-
tions of the intervals between arrivals and service 
times by A* (s) and B* (s), respectively. The essence of 
solving Lindley’s integral equation using the spectral 
decomposition method is to find an expression for 
A*(–s)·B*(s) – 1 in the form of a product of two factors 
that would give a rational function of s. Therefore, to 
find the distribution law of the waiting time, the fol-
lowing spectral decomposition is required:

( ) ( ) ( ) ( )* * / ,A s B s s s+ −− ⋅ − = ψ ψ1

where ψ+(s) and ψ-(s) are some rational functions of s 
that can be decomposed into factors. The functions 
ψ+(s) and ψ-(s) must satisfy special conditions accord-
ing to [1].

1. Problem statement
The paper sets the task of finding a solution for 

the average waiting time of requests in a queue in 
QS H2/HE2/1 and H / HE /− −

2 2 1  with shifted hyper-
exponential (H )−2  and hyper-Erlang (HE )−2  input dis-
tributions using the classical spectral decomposition 
method. For other systems, the application of this 
method is considered in [2-4]. Issues of approxima-
tion of distribution laws are discussed in detail in [5; 
6; 8-10].

2. Solution to the problem
Consider the system H2/HE2/1, formed by the hy-

per-exponential and hyper-Erlang distribution laws 
with density functions

( ) ( )
( ( , ) ) / ( )

t t

x

a t p e p e

x n k n k m
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× − − − σ σ

1 2
1 2
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( ) ( ) .t tb t q te q te− µ − µ= µ + − µ1 22 22 2
1 24 4 1 	 (2)

Distribution laws (1) and (2) are the most general 
distributions of non-negative continuous random 
variables, since they provide a wide range of variation 
coefficients.

The Laplace transform of functions (1) and (2) is
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Then the spectral decomposition for the system 
H2 /HE2 /1 is transformed as
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The first factor on the right-hand side in square 
brackets is equal to
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where the intermediate parameters are a0= λ1λ2 and 
a1= p λ1 + (1 – p) λ2. Similarly, we represent the second 
factor
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where the intermediate parameters are ,b = µ µ2 2
0 1 216  

b1 [ ( ) ],q q= µ µ µ + − µ1 2 1 216 1  [b q= µ +2
2 14 ( ) ].q− µ2

21
Then the desired expression for the spectral decom-
position will be written as

( )
( )
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The polynomial in the numerator on the right-
hand side of the decomposition (3) always has one 
zero s = 0 [1]. In this case, the free term of the decom-
position is also equal to 0: a b −0 0 .λ λ µ µ ≡2 2

1 2 1 216 0
In the numerator of the fraction on the right-hand 

side of the expansion, we obtain a sixth-degree poly-
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nomial (s s c s c s− − − −5 4 3
4 3 ),c s c s c− −2

2 1 0  whose co-
efficients are equal to:

( )c a b a b b= − + λ + λ −0 0 1 1 0 0 1 2 	 (4)
( ),a− µ µ µ +µ0 1 2 1 216

( )

( )( ) ,

c a b a b b a

a

= − − − µ +µ +
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2 2
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1 2 1 2 1 2 0 1 2

4

16 16
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2
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3 1 2 1 2 1 2 1 2 04 4 2

( ).c = λ + λ − µ +µ4 1 2 1 24

The coefficients (4) were obtained using Mathcad 
symbolic operations, since the numerator of the de-
composition (3) contains 42 terms even after intro-
ducing intermediate parameters. Apparently, the 
lack of results for the system under consideration is 
explained by the large amount of work involved in the 
calculations.

Let us isolate the polynomial in the numerator of 
the decomposition (3):

,s c s c s c s c s c− − − − −5 4 3 2
4 3 2 1 0 	 (5)

since determining its roots is the main part of the 
spectral decomposition method.

An investigation of the polynomial (5) with coef-
ficients (4) using Viète’s formulas confirms the exis-
tence of four negative real roots and one positive root, 
or, instead of the former, two negative real roots and 
two complex conjugate roots with negative real parts. 
An examination of the sign of the lowest coefficient 
of polynomial (5) shows that c0 > 0 always in the case 
of a stable system when 0 < ρ < 1. Taking into account 
the minus sign in the polynomial before the coeffi-
cient c0 , Viète's formulas do not contradict the fact 
that there are four negative roots of polynomial (5).

By denoting the negative roots of the polyno-
mial (5) or their negative real parts for convenience 
as –s1, –s2, –s3, –s4, and the positive root as s5, the ratio 
ψ+(s) / ψ-(s) can finally be decomposed into the follow-
ing factors:

( )
( ) ( )( )

( )( )( )( )( )
.

( ) ( )

s s s s s s s s s s s s
s s s s s
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1 2 3 4 5
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Taking into account the special conditions [1], we 
accept the function ψ+(s) as

( )( )( )
(

( )
,

( )
)

( )

s s s s s s s s s

s s
s+

+ + + +

µ + µ +
ψ = 1 2 3 4

2 2
1 22 2

since the zeros of the polynomial (5) are: 
s = 0, –s1, –s2, –s3, –s4, and the double poles s = –2μ1, 

s =–2μ2 lie in the region Re(s) ≤ 0, and for the func-

tion ψ–(s) –  ( ) ( )( )
,

( )
s s
s s

s−
λ − λ −

ψ = −
−

1 2

5
since its zeros and pole lie in the region Re(s) < D.

Next, using the spectral decomposition method, 
we determine the constant

( )
lim .
s

s s s s s
K

s
+

→

ψ
= =

µ µ
1 2 3 4

2 20
1 216

The constant K determines the probability that the 
request entering the system will find it free. Using 
the function ψ+(s) and the constant K, we will deter-
mine the Laplace transform of the waiting time W(y):

( ) ( )
Ks

s+
+

Φ = =
ψ

( ) ( )
( )( )( )( )

.
s s s s s s

s s s s s s s s s

+ µ + µ
=

µ µ + + + +

2 2
1 2 3 4 1 2

2 2
1 2 1 2 3 4

2 2

16

Then, the Laplace transform for the waiting time 
density function will be the function s · F+(s), i.e.

( ) ( ) ( )
( )( )( )( )

* .
s s s s s s

W s
s s s s s s s s

+ µ + µ
=

µ µ + + + +

2 2
1 2 3 4 1 2

2 2
1 2 1 2 3 4

2 2

16
	 (7)

The desired average waiting time in the queue is 
equal to the value of the derivative of the Laplace 
transform (9) of the density function with a minus 
sign at the point s = 0:

( )*
.

s

dW s
ds s s s s

=

− = + + + − −
µ µ1 2 3 4 1 20

1 1 1 1 1 1

Finally, the average waiting time in the queue for 
QS H2/HE2/1

.W
s s s s

= + + + − −
µ µ1 2 3 4 1 2

1 1 1 1 1 1 	 (8)

From expression (7), it is also possible to determine 
the higher-order moments for the waiting time, if 
necessary. The second derivative of the transform (7) 
at the point s = 0 gives the second initial moment of 
the waiting time, which allows us to determine the 
variance of the waiting time. Considering the defi-
nition of jitter in telecommunications as the spread 
of the waiting time around its mean value [7], we can 
thus determine jitter through variance. This is an 
important result for the analysis of delay-sensitive 
traffic.

Now let us move on to the study of the H2/ 
HE2/1 system with shifted input distributions, i.e., a 
system with time delay. Unlike a conventional sys-
tem, we will denote such a system as H / HE /− −

2 2 1 . To 
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do this, we will consider the density functions of the 
input flow intervals and service times:

( ) ( )( ) ( ) ,t t t ta t p e p e−λ − −λ −= λ + − λ1 0 2 0
1 21 	 (9)

( ) ( )( ) t tb t q t t e− µ −= µ − +1 022
1 04 	 (10)

( ) ( )( ) .t tq t t e− µ −+ − µ − 2 022
2 04 1

The density functions (9) and (10) are shifted to the 
right of the zero point by an amount t0 > 0 by hyper-
exponential and hyper-Erlang distributions of the 
second order. To find the average waiting time in the 
queue for this system, we will prove the following 
statement.

Statement. The spectral decompositions 
A*(–s) · B*(s) – 1 = ψ+(s) / ψ-(s) for the systems 
H / HE /− −

2 2 1  and H2/HE2/1 coincide completely and 
have the form (6).

Proof. For the system H / HE /− −
2 2 1 , the spectral de-

composition will have the form
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The exponents with opposite signs are zeroed, and 
the shift operation is thus levelled out. 

Thus, the spectral decompositions of the solution 
of Lindley’s integral equation for the two systems un-
der consideration coincide. The statement is proven.

Corollary. The calculated expression for the aver-
age waiting time for a system with shifted distribu-
tions will have exactly the same form as for a system 
with normal distributions, but with changed param-
eters due to the time shift operation [2–4].

Now let us determine the numerical characteristics 
and, through them, the unknown parameters of dis-
tributions (9) and (10) using the method of moments. 
To do this, we write down their Laplace transforms:

( )* ( ) [ ] ,t sA s p p e
s s

−λ λ
= + −

λ + λ +
01 2

1 2
1

( )* ( ) [ ] .t sB s q q e
s s
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0

2 2
1 2

1 2

2 2
1

2 2

The first derivative of function A∗(s) with a minus 
sign at point s = 0 gives the values of the average in-
terval of claim arrival

( ) ,p p t− −
λτ = λ + − λ +1 1

1 2 01 	 (11)

and the second derivative gives the second initial mo-
ment of this interval

( ) ( )[ ] [ ].p p p pt tλ
− −

τ = + + + +
λ λ λ λ

2 2
0 0 2 2

1 2 1 2

1 12 2 	 (12)

Then the square of the coefficient of variation of 
the arrival interval will be equal to

[( ) ( ) ( ) ]
.

[ ( ) ]

p p q p p
c

t p p
λ

− λ − λ λ − + − λ
=

λ λ + − λ + λ

2 2 2
2 1 1 2 2

2
0 1 2 1 2

1 2 1 2

1
	 (13)

Proceeding similarly with distribution (10), we de-
termine the corresponding characteristics for the 
service time.

( ) ,q q t− −
µτ = µ + − µ +1 1

1 2 01 	 (14)

( ) ( )[ ] [ ],q q q qt tµ
− −

τ = + + + +
µ µ µ µ

2 2
0 0 2 2

1 2 1 2

1 3 12
2
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( ) ( )( )
.

[ ( ) ]

q q q
c

t q q
µ

µ − µ µ −µ + − µ −µ
=

µ µ + − µ + µ

2 2
2 1 2 1 2 1 2

2
0 1 2 1 2

2 1 2

2 1
	 (16)

The mechanism for determining the parameters of 
distributions (1), (2), (9) and (10) using both the first 
two initial moments and the first three initial mo-
ments is described in detail in [3] and [4], respectively. 
Here we give the ready-made expressions for these 
parameters. For distribution (9), we find the unknown 
parameters using the expressions:

( )
,

[( ) ]

t
p

t c
λ

λ λ λ

τ −
= ± −

τ − + τ

2
0

2 2 2
0

1 1
2 4 2

/ ( ),p tλλ = τ −1 02  ( ) / ( ),p tλλ = − τ −2 02 1

and for distribution (10) –

( )
,

[( ) ]

t
q

t c
µ

µ µ µ

τ −
= ± −

τ − + τ

2
0

2 2 2
0

31 1
2 4 8

/ ( ),q tµµ = τ −1 02  ( ) / ( ).q tµµ = − τ −2 02 1

These expressions imply that the shift parameter is 
limited by the condition t <0 .µ λτ < τ  Furthermore, 
the applicability of the system H / HE /− −

2 2 1  is deter-
mined not by the negativity of the two sub-expres-
sions for p and q.

The algorithm for calculating the average waiting 
time for given input parameters ,λτ  ,µτ  ,cλ  ,cµ  t0  
boils down to sequentially determining the unknown 
parameters of distributions (9) and (10). Next, we de-



91
2025, vol. 28, no. 2, pp. 87–94	 Physics of Wave Processes and Radio Systems
2025. Т. 28, № 2. С. 87–94	 Физика волновых процессов и радиотехнические системы

termine the coefficients of the polynomial (5) using 
the above expressions (4) and find the required roots 
with negative real parts –s1, –s2, –s3, –s4. Substituting 
the absolute values of these roots into expression (8), 
we determine the average waiting time. The presence 
of such roots is due to the existence and uniqueness 
of the spectral decomposition. Numerous experi-
ments have only confirmed this fact.

3. Results of computational experiments
Tables 1 and 2 show the results of calculations in 

Mathcad for a conventional H2/NE2/1 system and a 
system with a delay of H / HE /− −

2 2 1  for low, medium 
and high loads ρ = 0,1; 0,5; 0,9 for a wide range of 
variation coefficients cλ, с(μ) and shift parameter t0. 
The results for the conventional system are compared 
with the data for the similar system H2/H2/1. Dashes 
in Table 1 indicate that the H2/NE2/1 system is not 
applicable for these parameter values. The results for 
the system with delay H / HE /− −

2 2 1  are compared with 
the results for the conventional system. The load fac-
tor ρ in both tables is determined by the ratio of the 
average intervals / .µ λρ = τ τ  The calculations use the 
normalised service time .µτ = 1

The results for the H2/NE2/1 and H2/H2/1 systems 
coincide to the integer parts, but the range of service 
parameters for the first system is wider than for the 
second.

The system H / HE /− −
2 2 1  is also applicable for small 

values of the coefficients of variation, in particular, 
when , ,ρ = 0 9  cλ = ,cµ = 0 2  ,t =0 0 99 , the average 
waiting time is only ,W = 0 187  units of time.

Thus, the range of parameter variation for the sys-
tem H / HE /− −

2 2 1  is much wider than that for the con-
ventional system H2/HE2/1.

Conclusion
The following conclusions can be drawn from the 

results of the work.
As expected, reducing the coefficients of variation 

cλ and сμ by introducing the shift parameter t0 > 0 into 
the distribution laws of the input flow and service 
time results in a noticeable decrease in the average 
waiting time in systems with delays. Thus, we extend 
the scope of application of the H2/HE2/1 system in 
traffic theory.

The scientific novelty of the results obtained lies 
in the fact that a spectral decomposition of the solu-

Table 1. Experimental results for the H2/HE2/1 system
Таблица 1. Результаты экспериментов для системы H2/HE2/1

Input parameters Average waiting time
ρ (cλ,cμ ) QS N2/NE2/1 QS N2/N2/1

(1; 0,71) 0,086 -

(1;1) 0,111 0,111

0,1 (2;2) 0,446 0,445

(4;4) 1,791 1,779

(8;8) 7,173 7,112

(1; 0,71) 0,755 -

(1;1) 1,000 1,000

0,5 (2;2) 4,043 4,044

(4;4) 16,235 16,129

(8;8) 64,844 64,178

(1; 0,71) 6,771 -

(1;1) 9,075 9,000

0,9 (2;2) 36,169 36,200

(4;4) 144,773 144,833

(8;8) 577,875 577,861
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tion of the Lindley integral equation for the systems 
under consideration has been obtained and, with its 
help, a calculation formula for the average waiting 
time in the queue for this system has been derived 
in closed form. The data from numerical experiments 
confirm the complete adequacy of the theoretical re-
sults obtained.

The practical significance of the work lies in the 
fact that the results obtained can be successfully ap-
plied in modern teletrafic theory, where delays in in-
coming traffic packets play a paramount role. To do 
this, it is necessary to know the numerical character-
istics of the incoming traffic intervals and the service 
time at the level of the first two moments, which is 
not difficult when using modern traffic analysers.

Table 2. Experimental results for the H / HE /− −
2 2 1  system

Таблица 2. Результаты экспериментов для системы H / HE /− −
2 2 1

Input parameters Average waiting time

(cλ,cμ) (cλ;cμ)
QS H / HE /− −

2 2 1  
QS H2/HE2/1

t0  = 0,99 t0  = 0,5 t0  = 0,01

0,1

(1;0,71) 0,03 0,04 0,09 0,09

(1;1) 0,06 0,07 0,11 0,11

(2;2) 0,23 0,36 0,44 0,45

(4;4) 0,93 1,56 1,79 1,79

(8;8) 3,74 6,38 7,16 7,17

0,5

(1;0,71) 0,26 0,48 0,75 0,76

(1;1) 0,51 0,75 0,99 1,00

(2;2) 2,04 3,15 4,03 4,04

(4;4) 8,15 12,73 16,17 16,24

(8;8) 32,62 51,07 64,58 64,84

0,9

(1;0,71) 2,49 6,00 6,77 6,77

(1;1) 4,73 8,29 9,06 9,08

(2;2) 18,92 33,20 36,14 36,17

(4;4) 75,69 123,39 144,63 144,77

(8;8) 302,78 528,43 577,29 577,88
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Спектральные решения для СМО с законами 
распределений в виде вероятностных смесей

В.Н. Тарасов , Н.Ф. Бахарева 
Поволжский государственный университет телекоммуникаций и информатики  

443010, Россия, г. Самара,  
ул. Л. Толстого, 23

Аннотация – Обоснование. СМО являются основным математическим инструментарием моделирования систем 
передачи данных, которые недаром называют сетями массового обслуживания. Необходимость регулирования таких 
характеристик систем массового обслуживания, как время ожидания в очереди или длины очереди, обусловлена 
повышением качества функционирования систем передачи данных. Возможность регулирования этих характеристик 
позволяет минимизировать время ожидания в очереди в буферах передающих устройств, а также сами объемы буферной 
памяти. Для демонстрации такой возможности в работе рассмотрены системы массового обслуживания, сформированные 
как обычными законами распределений в виде вероятностных смесей, так и сдвинутыми во времени законами 
распределений. Цель. В качестве составляющих СМО в работе выбраны гиперэкспоненциальное и гиперэрланговское 
распределения второго порядка. На основе этих законов распределений построены численно-аналитические модели 
для двух систем массового обслуживания с обычными и сдвинутыми законами распределений с выводом решения 
для основной характеристики СМО – среднего времени ожидания в очереди. Как известно, остальные характеристики 
СМО являются производными от среднего времени ожидания. Методы. В работе использован сдвиг законов 
распределений вправо от нулевой точки. Для вывода решения для среднего времени ожидания в очереди использован 
классический метод спектрального решения интегрального уравнения Линдли на основе преобразования Лапласа 
законов распределений, формирующих рассмотренные СМО. Полученные расчетные формулы для среднего времени 
ожидания в очереди позволяют рассчитать характеристики таких систем для широкого диапазона изменения параметров 
телетрафика. Результаты. Полученные результаты могут быть использованы в современной теории телетрафика 
при проектировании и моделировании различных перспективных систем передачи данных, включая объемы буферной 
памяти передающих устройств. Заключение. Сдвиг законов распределений во времени приводит к уменьшению их 
коэффициентов вариаций. Из-за квадратичной зависимости среднего времени ожидания от коэффициентов вариаций 
временных интервалов поступления и обслуживания следует заметное уменьшение среднего времени ожидания 
в системах с временными сдвигами.
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