Physics of Wave Processes and Radio Systems
2025, vol. 28, no. 2, pp. 87-94

DOI 10.18469/1810-3189.2025.28.2.87-94
UDC 621.391.1:621.395
Original research

Received 12 December 2024
Accepted 13 January 2025
Published 30 June 2025

Spectral solutions for QS with distribution laws
in the form of probabilistic mixtures

Veniamin N. Tarasov ®, Nadezhda F. Bakhareva

Povolzhskiy State University of Telecommunications and Informatics
23, L. Tolstoy Street,
Samara, 443010, Russia

Abstract - Background. QS are the main mathematical tool for modelling data transmission systems, which are not without
reason called queuing networks. The need to regulate such characteristics of mass service systems as waiting time in a queue or
queue length is due to the improvement of the quality of operation of data transmission systems. The ability to regulate these
characteristics allows minimising the waiting time in the queue in the buffers of transmitting devices, as well as the volumes
of buffer memory itself. To demonstrate this possibility, the paper examines queuing systems formed by both conventional
distribution laws in the form of probability mixtures and time-shifted distribution laws. Aim. In this work, the hyperexponential
and hyper-Erlangian distributions of the second order were chosen as components of the QS. Based on these distribution laws,
numerical-analytical models were constructed for two queuing systems with normal and shifted distribution laws, with the
derivation of a solution for the main characteristic of the queuing system - the average waiting time in the queue. As is known,
the remaining characteristics of the QS are derivatives of the average waiting time. Methods. The paper uses a shift of the
distribution laws to the right from the zero point. To derive a solution for the average waiting time in a queue, the classical
method of spectral solution of the Lindley integral equation is used based on the Laplace transform of the distribution laws
that form the considered QS. The obtained calculation formulas for the average waiting time in a queue allow us to calculate the
characteristics of such systems for a wide range of changes in teletrafic parameters. Results. The obtained results can be used in
modern teletrafic theory in the design and modelling of various promising data transmission systems, including the volumes of
buffer memory of transmitting devices. Conclusion. The shift of the distribution laws in time leads to a decrease in their variation
coefficients. Due to the quadratic dependence of the average waiting time on the variation coefficients of the arrival and service

time intervals, a noticeable decrease in the average waiting time follows in systems with time shifts.
Keywords - ordinary and shifted hyper exponential and hyper-Erlang distribution laws; Lindley integral equation; spectral

decomposition method; Laplace transform.

Introduction

The spectral solution method of Lindley’s inte-
gral equation plays an important role in the study of
G/G/1 systems. This method is most accessible in spe-
cific examples presented in the classics of queueing
theory [1].

This article is devoted to the analysis of QS
H,/HE,/1, formed by two flows described by ordinary
and right-shifted from the zero point density func-
tions of hyperexponential and hyper-Erlangian dis-
tribution laws of the second order.

In their early works, the authors clearly show that
in systems formed by shifted distribution laws, the
average waiting time becomes shorter than in con-
ventional systems with the same load factor. This is
achieved by the fact that the coefficients of variation
of arrival times ¢, and service times ¢, for shifted dis-
tribution laws become smaller when the shift param-
eter t,>0 is introduced. Thus, the distribution shift
operation transforms conventional Markovian queu-
ing systems into a non-Markovian G/G/1 system.
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The results of works [2-4] in the field of QS with
shifted distributions, together with [1], made it pos-
sible to develop a method of spectral decomposition
of the solution of Lindley’s integral equation for the
considered systems H,/HE,/1.

In queuing theory, studies of G/G/1 systems are
relevant because they are actively used in modern
teletrafic theory, and moreover, it is impossible to
obtain solutions for such systems in finite form for
the general case. The spectral decomposition method
for solving Lindley’s integral equation plays an im-
portant role in the study of G/G/1 systems, and most
of the results in queueing theory have been obtained
using this method.

One form of Lindley’s integral equation looks like

this [1]:

y
J.W y—u)dC(u), y=0;
iy W=t
0, y<0,
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where W(y) is the probability distribution function
(PDF) of the waiting time for a request in a queue;
C(u)=P(i<u) is the PDF of the random variable
i=x—t, , where, in turn, X is the random service
time for a request; ¢ is the random variable repre-
senting the time interval between requests.

In this brief description of the method for solving
Lindley’s equation, we will adhere to the approach
and notation used by the author [1]. To do this, we will
denote the Laplace transforms of the density func-
tions of the intervals between arrivals and service
times by A* (s) and B* (s), respectively. The essence of
solving Lindley’s integral equation using the spectral
decomposition method is to find an expression for
A*(-s)-B*(s) - 1 in the form of a product of two factors
that would give a rational function of s. Therefore, to
find the distribution law of the waiting time, the fol-
lowing spectral decomposition is required:
A*(—s).B*(s)—1:w+ (s)/\u_(s),
where y,(s) and y_(s) are some rational functions of s
that can be decomposed into factors. The functions

v, (s) and y_(s) must satisfy special conditions accord-
ing to [1].

1. Problem statement

The paper sets the task of finding a solution for
the average waiting time of requests in a queue in
QS H,/HE,/1 andH; /HE, /1 with shifted hyper-
exponential (H;) and hyper-Erlang (HE;) input dis-
tributions using the classical spectral decomposition
method. For other systems, the application of this
method is considered in [2-4]. Issues of approxima-
tion of distribution laws are discussed in detail in [5;
6: 8-10).

2. Solution to the problem

Consider the system H,/HE,/1, formed by the hy-
per-exponential and hyper-Erlang distribution laws
with density functions

a(t)= pkle_)”t +(1-p)re 1)

b(t) = 4qufre_2”1t +4(1—q)u§te_2”2t. (2)

Ayt

Distribution laws (1) and (2) are the most general
distributions of non-negative continuous random
variables, since they provide a wide range of variation
coefficients.

The Laplace transform of functions (1) and (2) is

* A A
O

2 2
* 2u 2n
o ()=o) +0- )

Then the spectral decomposition for the system
H, /HE, /1 is transformed as

e e
241,

) 2 2
x| q| =1 | +(1-q) 1.
2uq +s 2uy +s

The first factor on the right-hand side in square
brackets is equal to

{p kl}hl—s +(1—p) }\:2_5}:
:Kllz—[pk]+(l—p)x2]5: ag —a;s
(2 =5)(ry=s) (g —5)(p —3)’

where the intermediate parameters are ay= A A, and

a;=p Ay + (1 - p) A, Similarly, we represent the second
factor

2 2
2u 2n
gl =P | s(1-g)| 2| |-
22Uy +s 2uy +s

2.2 2 2.2
q(16p1p2 +16puipys +4uy's )
= +

(2p1 + 5)2 (2u2 + 5)2

2 2 2 2.2
(1—q)(16p1u2 +16pp5s +4u5s )
+ =

(21, +5)’ (20, +5)

by + b5 +bys*

(2, +5) (20 +5)
where the intermediate parameters are b, = 16;1%;1%,
by=16pylqu + (-], by =4lqui + (1-qu3l.
Then the desired expression for the spectral decom-
position will be written as

v, (s) B (ao —als)(bo +bys +b252) .
Vo) (2= 5) (g =) (20 +5) (20 +5)’
(=) (g =) (2 +5)” (21 +5)°

(Kl —s)(?u2 —s)(Zul +s)2 (2p2 +s)2

The polynomial in the numerator on the right-
hand side of the decomposition (3) always has one
zero s = 0 [1]. In this case, the free term of the decom-
position is also equal to 0: ayb, — 16k1k2ufu% =0.

In the numerator of the fraction on the right-hand
side of the expansion, we obtain a sixth-degree poly-
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. 5 4 3 2
nomial —s(s> —c,s™ —c35” — ¢y —¢;5—¢y), whose co-

efficients are equal to:

¢y = agby —ayby +by(hy +1y) - (4)
—16ag1py (1y +1y),

¢, = agh, —a;b; —b, —4a0(uf +u§)+

+16(h + g1y + g IqHg —16ag 11y,

¢y = 400y + Aoy +11y) + 20311, 1 -

= 4uy +py)ag +4py) —arby,
Cg = 4(7h1 +7\2)(lvl1 +H2)_4[(lvl1 +H2)2 +2H1H2]_aoa
Cy = Aq Ay —4uy +1y).

The coefficients (4) were obtained using Mathcad
symbolic operations, since the numerator of the de-
composition (3) contains 42 terms even after intro-
ducing intermediate parameters. Apparently, the
lack of results for the system under consideration is
explained by the large amount of work involved in the
calculations.

Let us isolate the polynomial in the numerator of
the decomposition (3):

s —0454 —c353 —0252 —¢48—Cps (5)
since determining its roots is the main part of the
spectral decomposition method.

An investigation of the polynomial (5) with coef-
ficients (4) using Viete’s formulas confirms the exis-
tence of four negative real roots and one positive root,
or, instead of the former, two negative real roots and
two complex conjugate roots with negative real parts.
An examination of the sign of the lowest coefficient
of polynomial (5) shows that ¢,> 0 always in the case
of a stable system when 0 < p < 1. Taking into account
the minus sign in the polynomial before the coeffi-
cient ¢, , Viete's formulas do not contradict the fact
that there are four negative roots of polynomial (5).

By denoting the negative roots of the polyno-
mial (5) or their negative real parts for convenience
as -s;, =Sy, =3, =54, and the positive root as s, the ratio
v, (s) / w_(s) can finally be decomposed into the follow-
ing factors:

\V+(s) —5(s+5)(s+55)(s +55)(s +5,)(s —55)
= 5 > 6)
V_(s)  (ag=s)(hy —5)(2uy +52 20y +)

Taking into account the special conditions [1], we

accept the function y,(s) as

B S(s+5))(s+5y)(s+55)(s+5,)
- 2

v, (s) 5
(2py +9)7(2py +5)

the the
$=0, -s1, -5y, =5, =54, and the double poles s = -2p,,

since zeros of polynomial (5) are:

s ==24, lie in the region Re(s) <0, and for the func-

Ay —S)A,—s
tion \']_(5) - w_ (s) = _M)
(5_55)
since its zeros and pole lie in the region Re(s) < D.
Next, using the spectral decomposition method,

we determine the constant

K = lim Y+ (s) _ 5152535
s>0 S 16”%“%

The constant K determines the probability that the

request entering the system will find it free. Using
the function y,(s) and the constant K, we will deter-
mine the Laplace transform of the waiting time W(y):

K
(I)+(s)=w+(s)=

$15953S4 (s +21 )2 (s +2u, )2

) l6su%u§ (s+s])(s+52)(s+33)(s+s4).

Then, the Laplace transform for the waiting time
density function will be the functions - F (), i.e.

W (s) _ 51895354 (s +2u4 )2 (s +2u, )2 .
16p%p% (s+sl)(s+s2)(s+53)(s+s4)

The desired average waiting time in the queue is

equal to the value of the derivative of the Laplace
transform (9) of the density function with a minus
sign at the point s =0:

W) 11 11 1

ds S, Sy S, S
o 1 %2 53 84 Mg

Finally, the average waiting time in the queue for
QS Hy/HE,/1
wot,t,t,r 11 (8)

1052 53 S¢ W K

From expression (7), it is also possible to determine
the higher-order moments for the waiting time, if
necessary. The second derivative of the transform (7)
at the point s =0 gives the second initial moment of
the waiting time, which allows us to determine the
variance of the waiting time. Considering the defi-
nition of jitter in telecommunications as the spread
of the waiting time around its mean value [7], we can
thus determine jitter through variance. This is an
important result for the analysis of delay-sensitive
traffic.

Now let us move on to the study of the H,/
HE,/1 system with shifted input distributions, i.e., a
system with time delay. Unlike a conventional sys-
tem, we will denote such a system as H, /HE; /1. To
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do this, we will consider the density functions of the

input flow intervals and service times:
a(t) = pkle_xl(t_[o) + (1 - p)kze_kz(t_to), 9

b(t) = 4quf (t—t, )e_zul(t_t°> + (10)

+ 4(1—q)u%(t—t0)672“2(t7t°).

The density functions (9) and (10) are shifted to the
right of the zero point by an amount t,> 0 by hyper-
exponential and hyper-Erlang distributions of the
second order. To find the average waiting time in the

queue for this system, we will prove the following

statement.
Statement.  The  spectral  decompositions
A*(-s)-B*s)-1=wy,(s)/y(s) for the systems

H; /HE, /1 and H,/HE,/1 coincide completely and
have the form (6).
Proof. For the system H;, /HE, /1, the spectral de-

composition will have the form

Ve (S) :[p }\“l

v_(s)
2 2

2y B 2, —tps 4 _

X[q[2u1+sJ +(l q){—2u2+sj le ™ —1=

}Ll +(1—p) }Lz %
Ay—s Ay —s
214

2 2
X 2 - -
[q[zuﬁs] o0 q)(zuz*'sj] "

The exponents with opposite signs are zeroed, and

=[p

the shift operation is thus levelled out.

Thus, the spectral decompositions of the solution
of Lindley’s integral equation for the two systems un-
der consideration coincide. The statement is proven.

Corollary. The calculated expression for the aver-
age waiting time for a system with shifted distribu-
tions will have exactly the same form as for a system
with normal distributions, but with changed param-
eters due to the time shift operation [2-4].

Now let us determine the numerical characteristics
and, through them, the unknown parameters of dis-
tributions (9) and (10) using the method of moments.
To do this, we write down their Laplace transforms:

A _
+(1—P)Tis]e s,

2 2
LR o e O _ 2, —toS
B (S)—[q(ZulHj +(1 Q)(2MQ+SJ Je 0%,

The first derivative of function A*(s) with a minus
sign at point s =0 gives the values of the average in-
terval of claim arrival

T, = pA +(1-pgt + g, (11)

and the second derivative gives the second initial mo-
ment of this interval

2 =2y L TPy g 2 D) (12
Ao My AAS

Then the square of the coefficient of variation of
the arrival interval will be equal to

[(1-p? A2 24 0y p(1—-q) + p(2— pIA3]

(13)
[tghihg + (1= P)hy + phy I

2 _
o =

Proceeding similarly with distribution (10), we de-
termine the corresponding characteristics for the
service time.

T, =qu ! +(1-qy + i, (14)
R N UL TR AV (15)

Mo M 2y g

2 2
C2 _ Hq _2‘1”2(“1_”2)+q(1_2q>(“1_”2> . (16)

n
2tguiny +(1-q)uy +qu, ]2

The mechanism for determining the parameters of
distributions (1), (2), (9) and (10) using both the first
two initial moments and the first three initial mo-
ments is described in detail in [3] and [4], respectively.
Here we give the ready-made expressions for these
parameters. For distribution (9), we find the unknown
parameters using the expressions:

— 2
poty o (k)

2 \4 27—t +ET

M =2p/(T, —ty), hy =21-p)/ (7 —ty),
and for distribution (10) -

)

1 3(7,
1=5% % 2 2-29
48T, — 1) +e T

2
_L-O)

=29/ (T, —tg), 1y =2(1-9)/ (T, —1o).

These expressions imply that the shift parameter is
limited by the condition ¢, < Ty <T- Furthermore,
the applicability of the system H, /HE, /1 is deter-
mined not by the negativity of the two sub-expres-
sions for p and g.

The algorithm for calculating the average waiting
time for given input parameters Ty, ?H, Chs Cus Lo
boils down to sequentially determining the unknown
parameters of distributions (9) and (10). Next, we de-
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Table 1. Experimental results for the Hy/HE,/1 system
Ta6nuua 1. Pe3ynbTaTe! aKcrepuMeHTOB A1 cucTeMbl Hy/HE,/1

Input parameters Average waiting time
p (c),c) QS N,/NE,/1 QS N,/N,/1
(1;0,71) 0,086 -
(1;1) 0,111 0,111
0,1 (2;2) 0,446 0,445
(4;4) 1,791 1,779
(8:8) 7,173 7,112
(1;0,71) 0,755 -
(1;1) 1,000 1,000
0,5 (2;2) 4,043 4,044
(4;4) 16,235 16,129
(8:8) 64,844 64,178
(1;0,71) 6,771 -
(1;1) 9,075 9,000
0,9 (2;2) 36,169 36,200
(4;4) 144,773 144,833
(8;8) 577,875 577,861

termine the coefficients of the polynomial (5) using
the above expressions (4) and find the required roots
with negative real parts -s;, -5y, —s3, =s,. Substituting
the absolute values of these roots into expression (8),
we determine the average waiting time. The presence
of such roots is due to the existence and uniqueness
of the spectral decomposition. Numerous experi-
ments have only confirmed this fact.

3. Results of computational experiments

Tables 1 and 2 show the results of calculations in
Mathcad for a conventional H,/NE,/1 system and a
system with a delay of H, /HE, /1 for low, medium
and high loads p=0,1; 0,5; 0,9 for a wide range of
variation coefficients c,, ) and shift parameter .
The results for the conventional system are compared
with the data for the similar system H,/H,/1. Dashes
in Table 1 indicate that the H,/NE,/1 system is not
applicable for these parameter values. The results for
the system with delay H; /HE, /1 are compared with
the results for the conventional system. The load fac-
tor p in both tables is determined by the ratio of the
average intervals p=7T /T, . The calculations use the
normalised service time T, =1L

The results for the H,/NE,/1 and H,/H,/1 systems
coincide to the integer parts, but the range of service
parameters for the first system is wider than for the
second.

The system H, /HE; /1 is also applicable for small
values of the coefficients of variation, in particular,
when p=09, ¢, = ¢, = 0,2 t,=099, the average
waiting time is only W = 0,187 units of time.

Thus, the range of parameter variation for the sys-
tem H, /HE; /1 is much wider than that for the con-
ventional system H,/HE,/1.

Conclusion

The following conclusions can be drawn from the
results of the work.

As expected, reducing the coefficients of variation
¢, and cy by introducing the shift parameter ¢, > 0 into
the distribution laws of the input flow and service
time results in a noticeable decrease in the average
waiting time in systems with delays. Thus, we extend
the scope of application of the Hy/HE,/1 system in
traffic theory.

The scientific novelty of the results obtained lies
in the fact that a spectral decomposition of the solu-
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Table 2. Experimental results for the H; /HE; /1 system

Ta6nuua 2. PesynbTaTel aKcnepuMeHToB A1 cucteMel Hy [HE, /1

Input parameters Average waiting time
(€56, (c35¢,) QS H, [HE, 1 QS H,/HE,/1
tp =0,99 tp =0,5 typ =0,01
(1;,0,71) 0,03 0,04 0,09 0,09
(1;1) 0,06 0,07 0,11 0,11
0,1 (2;2) 0,23 0,36 0,44 0,45
(4;4) 0,93 1,56 1,79 1,79
(8;8) 3,74 6,38 7,16 7,17
(1;,0,71) 0,26 0,48 0,75 0,76
(1;1) 0,51 0,75 0,99 1,00
0,5 (2;2) 2,04 3,15 4,03 4,04
(4;4) 8,15 12,73 16,17 16,24
(8:8) 32,62 51,07 64,58 64,84
(1;,0,71) 2,49 6,00 6,77 6,77
(1;1) 4,73 8,29 9,06 9,08
0,9 (2;2) 18,92 33,20 36,14 36,17
(4;4) 75,69 123,39 144,63 144,77
(8;8) 302,78 528,43 577,29 577,88

tion of the Lindley integral equation for the systems
under consideration has been obtained and, with its
help, a calculation formula for the average waiting
time in the queue for this system has been derived
in closed form. The data from numerical experiments
confirm the complete adequacy of the theoretical re-

sults obtained.

The practical significance of the work lies in the
fact that the results obtained can be successfully ap-
plied in modern teletrafic theory, where delays in in-
coming traffic packets play a paramount role. To do
this, it is necessary to know the numerical character-
istics of the incoming traffic intervals and the service
time at the level of the first two moments, which is
not difficult when using modern traffic analysers.
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Annomayua - O6ocHoBanne. CMO SBISIIOTCS OCHOBHBIM MaTeMaTHYeCKUM HHCTPYMEHTApHEM MOJEIHPOBAHMS CHUCTEM
nepefayd [aHHBIX, KOTOPble HEJAPOM HAa3bIBAIOT CETSIMH MAacCOBOro 06cnykuBaHus. HeoOXOMMMOCTD PeryiupoBaHUs TaKUX
XapaKTePUCTHK CHCTEM MAacCOBOTO OOGCIYXXHMBaHHUs, KAK BpPeMs OXHOAHHs B O4Yepefd WIM [UIMHBl OYepenu, obycIoBIeHa
MOBBIIIEHUEM KauyecTBa PYHKLMOHMPOBAHUSI CUCTEM Tepenadyy JaHHBIX. BO3MOXHOCTb PeryIMpOBaHHUsl dTHUX XapaKTEPUCTUK
M03BOJIIET MUHUMHU3HUPOBATh BpeMsl OXKHIAHUs B 09epenu B 6ydepax nepefamlinx yCTPOUCTB, a TaKKe caMu 06beMbl 6ypepHOi
namsTH. [171s1 [eMOHCTPaL[Mi TAKOW BO3MOKHOCTH B pab0Te paCCMOTPEHBI CHCTEMBI MACCOBOTO 06CITy>KUBaHUsI, CGOPMHUPOBaHHbBIE
KaK OOBIYHBIMM 3aKOHAMM paclipefie/leHHH B BHME BEPOSITHOCTHBIX CMeCeH, TaK M CABHHYTBIMH BO BpeMeHH 3aKOHAMHU
pacnpenenenuii. enb. B kayecte cocrapnsiomux CMO B pabore BbIGpaHbl MMIEPIKCIOHEHIHAIBHOE U THIIEPIPIAHIOBCKOE
pacrpeniesieH|s1 BTOpPOro mnopsiaka. Ha ocHOBe 9THX 3aKOHOB pacIpefie/leHHH MOCTPOeHbl YHC/IeHHO-aHATUTHYECKHE MOJENH
OJIsl JBYX CHCTEM MacCOBOTO OGCIy>KHBaHMs C OGBIYHBIMU M CABHHYTHIMU 3aKOHAMH pacClpefe/ieHUH C BBIBOLOM peLIeHHS
1J1s1 OCHOBHOM xapaktepuctuku CMO - cpenHero BpeMeHH OXHAAHUs B odepend. Kak U3BeCTHO, OCTalbHbIE XAPAKTEPUCTHKH
CMO sBAAITCS TPOU3BOAHBIMH OT CpeJHEro BpeMeHHM OXuaaHus. Metogpl. B paGore HCMONb30BaH CHOBUI 3aKOHOB
pacrpefiesieHu BIPaBO OT HYJIE€BOW TOYKH. [IJis BHIBOJA PELIEHUS MJIsl CPELHEr0 BPEMEHH OXHAAHUS B OUYEPeNH MCIONb30BaH
KJIACCHYECKUM METO[ CHEeKTPAJbHOrO peLIeHUs] WHTErpajbHOro ypaBHeHWs JIMHIJIM Ha OCHOBe npeo6pasoBanus Jlammaca
3aKOHOB pacrpeneneHuii, popmupyomux paccmorpensie CMO. [MonyyeHHble pacyeTHble GpOPMYIIBI Al CPEJHETO BPEMEHH
OKH/aHMSI B OY€PeH MO3BOJIAIOT PACCIMTAT XaPAKTEPUCTUKH TAKKX CHCTEM [JIs IIUPOKOr0 JUANa30Ha U3MEHEHUsI TapaAMETPOB
renerpaduka. Pesdynbrarbl. [losydeHHBIE pe3ynbTaThl MOIYT 6bITh KMCIONb30BaHbl B COBPEMEHHOM Teopuu TeneTpaduka
[pY MPOEKTUPOBAHUU U MOETMPOBAHUH PA3TMYHbBIX M€PCIEKTUBHBIX CUCTEM Iepefiadyr AaHHBIX, BKIOYast 06beMbl OypepHOit
namsITH Tepefaliux yCTPoHCTB. 3aknodenre. COBUI 3aKOHOB paclpefesieHUi BO BPeMEHH NMPHUBOSUT K YMEHBIUEHHIO HX
K03$PULMeHTOB Bapuanui. V3-3a KBagpaTUYHON 3aBUCUMOCTU CPEJHEr0 BPEMEHU OXKHU[AHHUs OT KO3pPULUEHTOB BapUalUii
BpPEMEHHBIX HMHTEPBAJOB MOCTYIUIEHWsT M OOCIYXXHBAaHUs CJIefyeT 3aMeTHOEe yMEHbIIEHHEe CpPeJHEro BpPEeMEHH OXKHIAHWUsI
B CUCTE€MAax C BpeMEHHBIMH CABUTAMH.
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