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Аннотация: представлена методика численного моделирования диаграммы направленности эквидистантной 

микрофонной решётки с учетом акустико-механического взаимодействия. Исследовано влияние механических дефор-
маций несущей платы на пространственные характеристики массива при воздействии плоской акустической волны 
частотой 500 Гц. Разработана модель, включающая плату размером 260×260×2 мм из материала FR-4 с 36 микрофона-
ми, расположенными с шагом 50 мм. Проведено сравнительное моделирование для двух случаев: упругая плата и аб-
солютно жесткая конструкция. Показано, что максимальная деформация платы составляет 2,5993×10-9 м, а средняя от-
носительная погрешность синфазных сумм сигналов между моделями не превышает 0,0358 %. Для построения диа-
граммы направленности использован алгоритм синфазного суммирования сигналов с последующей нормировкой и 
переводом в логарифмический масштаб. Результаты демонстрируют, что для данной конфигурации и частотного диа-
пазона влияние механических деформаций на пространственные характеристики решетки является пренебрежимо ма-
лым. Полученные результаты позволяют конкретизировать границы применимости упрощенных моделей и разрабаты-
вать эффективные алгоритмы пространственной обработки сигналов без учета деформаций несущей конструкции. 
Предложенная методика может быть использована для оптимизации конструкций микрофонных решеток на этапе 
проектирования 
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Введение 
1 

Эквидистантные микрофонные решётки 
являются ключевым элементом в системах про-
странственной обработки звука, где их эффек-
тивность определяется диаграммой направлен-
ности (ДН) — угловой зависимостью чувстви-
тельности к акустическим волнам. 

В настоящее время ДН таких решёток тра-
диционно моделируется в предположении абсо-
лютной жесткости несущей конструкции [1]. 
При этом влияние акустико-механического 
взаимодействия, заключающегося в возникно-
вении упругих деформаций платы под действи-
ем звукового давления, в большинстве работ 
игнорируется, что может приводить к погреш-
ности прогнозирования пространственных ха-
рактеристик. 

Целью данной работы является разработка 
методики моделирования ДН эквидистантной 
микрофонной решётки, учитывающей акусти-
ко-механическое взаимодействие. Практическая 
значимость исследования заключается в воз-
можности оценки влияния деформаций конст-
рукции на направленные свойства массива и 
                                                            
 Сукачев А.И., Верлин Р.А.,  
Сукачева Е.А., Башкиров А.В., 2025 

последующей оптимизации геометрии решёток 
для конкретных прикладных задач без проведе-
ния натурных экспериментов. 

 
Математическая модель 

 
Для описания взаимодействия акустиче-

ского поля с упругой конструкцией решётки 
использовалась связанная задача акустики и 
структурной механики. 

Акустическая часть модели описывается 
трёхмерным волновым уравнением [2]: 
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где p — акустическое давление; 
      c — скорость звука; 
      x — координата в направлении распростра-
нения волны; 
       t — время распространения волны. 

Для гармонических колебаний с опреде-
ленной частотой уравнение (1) преобразуется к 
уравнению Гельмгольца [2]: 

݌ଶ׏ ൅ ݇ଶ݌ ൌ 0, (2) 
где k — волновое число;  
       — оператор Лапласа. 
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лов без учета деформаций несущей конструк-
ции в заданном частотном диапазоне. 

Предложенный подход открывает перспек-
тивы для дальнейшей оптимизации конструк-
ций микрофонных решеток и разработки ком-
пенсационных алгоритмов для случаев, когда 
учет механических деформаций становится не-
обходимым. Применение данной методики по-
зволяет перейти к целенаправленному проекти-
рованию акустических систем с заданными ха-
рактеристиками направленности. 
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SIMULATION OF THE RADIATION PATTERN OF AN EQUIDISTANT MICROPHONE ARRAY 
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Voronezh State Technical University, Voronezh, Russia 
 

Abstract: the article presents a technique for numerical modeling of the radiation pattern of an equidistant microphone 
array, taking into account the acoustic-mechanical interaction. We investigated the effect of mechanical deformations of the 
carrier board on the spatial characteristics of the array under the influence of a plane acoustic wave with a frequency of 500 
Hz. We developed a model that includes a 260×260×2 mm board made of FR-4 material with 36 microphones arranged in 50 
mm increments. We carried out comparative modeling for two cases: an elastic board and an absolutely rigid structure. We 
show that the maximum deformation of the board is 2.5993×10⁻9 m, and the average relative error of the common-mode sums 
of signals between the models does not exceed 0.0358%. To construct the radiation pattern, we used an algorithm for common-
mode summation of signals, followed by normalization and conversion to a logarithmic scale. The results demonstrate that for 
a given configuration and frequency range, the effect of mechanical deformations on the spatial characteristics of the lattice is 
negligible. The results obtained make it possible to specify the limits of applicability of simplified models and develop effec-
tive algorithms for spatial signal processing without taking into account deformations of the supporting structure. The proposed 
technique can be used to optimize microphone array designs at the design stage 
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