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Аннотация: представлен стохастический подход к управлению потоками данных в мобильных AD-HOC сетях 

(MANET), направленный на повышение энергоэффективности и устойчивости маршрутизации в условиях динамиче-
ски изменяющейся топологии сети. В основу предложенного метода положено использование скрытых марковских 
моделей (HMM), позволяющих формировать вероятностные зависимости между состояниями узлов и их энергетиче-
скими характеристиками. Разработана взаимосвязанная эргодическая модель, в которой алгоритм Витерби применяет-
ся для декодирования скрытых состояний и выбора оптимального маршрута передачи данных, а алгоритм Баума–
Уэлча обеспечивает адаптивную оптимизацию параметров модели на основе наблюдаемых уровней энергопотребле-
ния. Моделирование, выполненное с использованием сетевого симулятора NS2 (версия 2.35), показало снижение 
среднего энергопотребления сети на 19,05 % по сравнению с базовым протоколом AODV, а также уменьшение на-
кладных расходов и повышение стабильности передачи данных. Полученные результаты подтверждают целесообраз-
ность применения стохастических моделей для построения интеллектуальных алгоритмов маршрутизации, обеспечи-
вающих баланс между качеством обслуживания и энергозатратами. Разработанный метод может быть использован 
при проектировании энергоэффективных протоколов управления потоками данных в сетях MANET и WSN, функцио-
нирующих в распределённых и ресурсно-ограниченных средах 
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Введение 
1

 

Статья продолжает исследование [1], 
посвященное разработке вероятностного 
метода управления потоками данных на ос-
нове скрытой марковской модели. Сохра-
нена нумерация разделов и иных объектов. 
 

4.4. Стохастическое решение о маршруте 
 

В этом разделе описывается, как обычные 
параметры управления потоками данных  
AODV (протокол динамической маршрутиза-
ции для мобильных AD-HOC сетей (MANET)) 
используются для стохастического поиска 
кратчайших путей [2]. На этом этапе система 
использует численное значение эмпирического 
расчета для определения  наилучшей скрытой 
последовательности в соответствии с исходной 
моделью. 

Декодирование производится с использо-
ванием алгоритма Витерби, и предлагаемая 
система оценивает, требуется ли шаг обучения 
с использованием метода Баума-Уэлча для оп-
тимизации модели. 

 

                                           
 Хуссейн А.И., Рындин Н.А., 2025 

 
4.4.1. Предложенная полностью связанная  

модель 
 

Чтобы определить нашу стохастическую 
модель, мы запускаем последовательность Y в 
момент времени T=10 для наблюдаемых сим-
волов. Каждый символ Yt представляет значе-
ние энергии, которое, вероятно, наблюдается на 
пути в это время. 

Предположим, что мы наблюдаем сле-
дующую короткую последовательность (11) 
уровней (12): 

 
Y=v1, v2, v3, v3, v2, v1, v1, v2, v3, v1 ,      (11) 

Y=L, M, H, H, M, L, L, M, H, L .      (12) 
 
Последовательность Y представляет собой 

выбранные случайным образом символы на-
блюдения, где каждый символ определяет уро-
вень энергий в системе [3]. Вероятность со-
блюдения последовательности, заданной моде-
лью , оценивается в Прямом алгоритме. Каж-
дый символ vk иллюстрирует энергетический 
уровень, на котором может находиться каждое 
состояние: 
V=v1=Low(L); v2=Medium(M); v3=High(H). 

На рис. 3 коэффициенты перехода между 
состояниями не равны нулю; именно поэтому 
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предложенная HMM является взаимосвязанной 
эргодической моделью. Коэффициенты aij 
представляют собой переходы между состоя-
ниями. Выбор скрытых состояний не является 
фиксированным и может быть скорректирован 
в соответствии с потребностями системы и со-
ответствовать количеству начальных кратчай-
ших путей.  

 

 
 

Рис. 3. Эргодический полносвязный граф HMM,  
используемый в протоколе стохастической управления 

потоками данных 
 

Алгоритм Витерби используется для поис-
ка оптимальной скрытой последовательности. 
Учитывая последовательность наблюдений и 
модель HMM, алгоритм возвращает путь к со-
стоянию через HMM, который присваивает по-
следовательности наблюдений максимальное 
правдоподобие. Мы используем следующее 
обозначение: P(X, Y/). 

Определим величину t(j) для j=1…N, для 
t=1…T, t(j) - это максимальная вероятность, 
учитывая количество k параметров, того, чтобы 
пройти через последовательность состояний 
X1t, которая заканчивается в Ej в момент вре-
мени t, и наблюдать последовательность Y1t: 

 
t(j)=Max1t1P(X1t1, Xt=Ej,Y1t /    (13) 
 
Из состояния Ej в момент времени t и со-

стояния Ei в момент времени t1 при t=2…T, t(j)  
- максимальная вероятность того, что пути за-
канчиваются в состоянии Ej. 

Методом индукции получаем: 
 

 
j

i
t 1 ij t E t 1

E
( j) max a b (Y )     .     (14) 

 
 
 

Таким образом, определение максималь-

ного аргумента 
j

t
E

arg max ( j)  похоже на по-

лучение 
 

j

ij t 1
E

arg max a ( j)  .               (15) 

 
Таким образом, принимая аргумент для 

максимума t(j) для всех t=1,2,…,10 и j=1…N, 
мы получаем оптимальную последовательность 
состояний: 

 

j

t i t
E

(E ) arg max ( j)    .          (16) 

 
Для любых t[1, T] и j[1, N] переменные 

t и ψt используются для оценки наилучшего 
скрытого пути с использованием подхода Ви-
терби. Пороговая вероятность для процесса об-
наружения была установлена равной 0,4 (рис. 1 
[1]). 

 
4.4.2 Обучение стохастической модели  

управления потоками данных 
 

Обучение осуществляется после первой 
оценки декодирования Витерби. Оно основано 
на исходных параметрах стохастической моде-
ли  управления потоками данных, установлен-
ных на основе реальных характеристик сети и 
эмпирических формул. Алгоритм Баума-Уэлча 
используется для обучения исходной модели в 
соответствии с последовательностью наблю-
даемых изменений энергий во время работы 
сети. От этапа обучения к этапу повышается 
вероятность модели и точность решения о 
управления потоками данных. 

Следующее предположение должно быть 
проверено после каждого этап обучения. 

 
P(Y׀׀i)> P(Y׀׀i+1) .              (17) 

 
В уравнении (17) P(Y׀׀i) — это вероят-

ность исходной последовательности, а 
P(Y׀׀i+1) — это вероятность после обучающего 
набора, заданного нашей исходной стохастиче-
ской моделью управления потоками данных. 
После определенного количества итераций сто-
хастическая модель управления потоками дан-
ных  должна достичь стабильности. 
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4.4.3. Процесс принятия решения об управления 
потоками данных 

 
Для создания процесса принятия решения 

необходим набор вычислений. В этих вычисле-
ниях использовались алгоритмы прямого и об-
ратного хода, как показано в [4], для получения 
вероятностей всех возможных скрытых путей 
управления потоками данных, которые могли 
бы генерировать последовательность наблюде-
ний Y. 

Учитывая наблюдаемую последователь-
ность Y1t=Y1, …, Yt, получим вероятности то-
го, что первый Y1t завершится состоянием Ei, 
для i=1…T-1. Рассмотрим прямые переменные 
αi, определенные по формулам: 

 

i it E E t(i) П b (Y )    ,                 (18) 

N

t 1 j t 1 t ij
i 1

( j) b (Y ) (i) a 


     .         (19) 

 
Каждый элемент αi в уравнениях (18), (19) 

представляет собой вероятность использования 
энергии пути после просмотра первого наблю-
дения t.  

Например, мы использовали процесс за-
вершения в прямом/обратном алгоритме для 
оценки вероятности соблюдения наилучшей 
последовательности с помощью уравнения (20): 

N 10

T
i 1

P(Y / ) (i)




    .                  (20) 

 
В каждый момент времени t мы наблюда-

ем уровень энергопотребления, обозначенный 
символом vk. Это означает, что уровень энерго-
потребления системы может зависеть от веро-
ятности. 

Процесс завершения (20) используется для 
определения решения об управлении потоками 
данных, как показано в следующей таблице. В 
табл. 2 решение об управлении потоками дан-
ных  основано на уравнениях (20) и (21). От 
тренировки к тренировке вероятность этого 
повышается, а вместе с ней и эффективность 
решения о маршруте. В данном случае решение 
о маршруте достигает порогового значения по-
сле четырех тренировок. В другом случае ко-
личество тренировок может отличаться. 

Предварительная оценка помогает опреде-
лить вероятность управления потоками данных  
с использованием наилучшего кратчайшего 
пути с минимальными затратами энергии. Ко-

эффициент принятия решения об управлении 
потоками данных  вычисляется на основе сле-
дующей формулы: 

 
P(Y׀׀) ,                               (21) 

 
где  — постоянный параметр, эквивалентный 
начальной энергии в каждом узле в начале мо-
делирования. Он умножается на вероятность 
перехода от одной тренировки к другой для 
оптимизации параметров HMM. Результаты 
моделирования для этой работы представлены 
в следующем разделе. 

 
Таблица 2 

Решение о декодировании оптимальных  
значений скрытой последовательности 

Обучение  Вероятность  Решение о маршруте 
1  1.32e-09  1.32e-6 
2  3.92e-05  0.039 
3  2.24e-04  0.22 
4  4.59е-04  0.5 

 
5. Анализ результатов моделирования 

 
5.1. Настройка параметров 

 
Сетевой симулятор версии 2 (NS2) исполь-

зуется для реализации системного сетевого 
трафика для нашего стохастического алгоритма 
управления потоками данных  [5]. NS2 - это 
хорошо известный объектно-ориентированный 
сетевой симулятор с высокой степенью пара-
метризации, используемый научным сообщест-
вом, который позволяет экспериментировать со 
многими вариациями параметров сети и на-
блюдать относительные характеристики иссле-
дуемой системы. Его версия ns-2.35 была реа-
лизована в среде Ubuntu 14.04 LTS. Возможно-
сти моделирования приведены в табл. 3. 

Таблица 3 
Параметры моделирования 

Параметр  Значение 
Протоколы управления  
потоками данных   

AODV/предлагаемые 

Модель мобильности  равномерная 
Размер сети  100 на 200 м 
Начальная энергия  100 Дж 
Мощность передачи Tx  0,05 Вт 
Мощность приема Rx  0,024 Вт 
Скорость  1 Мб/с 
Количество узлов  10 
Время  100 с 
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5.2. Оценка вероятности управления  
потоками данных 

 
Во время реализации сети узлы использу-

ют определенный уровень энергии для обмена 
данными и участвуют в процедуре управления 
потоками данных. Сводная информация о по-
треблении типовых узлов приведена в табл. 4.  

В табл. 4 представлено иллюстративное 
представление значений энергии для пяти уз-
лов. В начале моделирования узлы имеют оди-
наковый начальный уровень энергии для запус-
ка моделирования.  

 
Таблица 4  

Потребление энергии узлами-образцами 
Идентификатор узла  2  
4  6  
8  10 
Энергия (Дж)  29,98  
29,82  28,71  
30,45  27,91 

 
Входные значения модели HMM рассчи-

тываются в соответствии с этими значениями 
энергий, чтобы иметь реалистичный прогноз 
при принятии окончательного решения о выбо-
ре кратчайшего пути. 

В табл. 5 приведены данные об общем по-
треблении энергии на каждом k кратчайших 
путях от узла N1, который является источни-
ком, и узла N10, который является пунктом на-
значения. 

 
Таблица 5 

Потребление энергии между исходным  
и конечным узлами 

Параметр управления потоками 
данных   

Значение 

Источник  N1 
Пункт назначения N10 
Путь 1  1,2,4,5,7,9,10 
Emin1  196,895 Дж 
Путь 2  1,2,4,5,7,8,10 
Emin2  197,339J 
Путь 3  1,2,4,5,6,8,10 
Emin3  198,246 Дж 

 
В табл. 6 указаны такие характеристики 

управления потоками данных, как минимальное 
потребление энергии путями, затраты и узлы, 
входящие в каждый путь. Мы выбираем огра-
ниченное количество путей и их потребление 
для расшифровки скрытой последовательности 
и, при необходимости, обучаем систему для 
оптимизации выходных данных. 

Моделирование сгенерировало вычислен-
ные скрытые состояния, как показано ниже, для 
случайной последовательности шагов наблю-
дения за общее время, T=10. Таким образом, 
мы выводим из этого вычисления наилучшую 
последовательность скрытых состояний  

 
=E1, E2, E3, E3, E1, E1, E1, E2, E3, E1  
P(Y׀׀)=3.92e-05, 

 
которая определяется начальными параметра-
ми. Алгоритм Витерби обеспечивает для нашей 
вероятностной системы уровень энергии E1, 
соответствующий низкому уровню в момент 
времени t при минимальной энергии. Мы мо-
жем использовать соответствующий путь для 
увеличения срока службы сети. В качестве аль-
тернативы, согласно подходу Витерби, нашим 
вероятным резервным маршрутом может быть 
E3, чтобы избежать нехватки энергии и проблем 
с управлением потоками данных. 
 

Таблица 6  
Особенности управления потоками данных  

путей 
Pathk  Узлы  Emink  Стоимостьk 

1  1,2,4,5,7,9,10  196,895 Дж  2,56 
2 1,2,4,5,7,8,10  197,339 Дж  2,76 
3  1,2,4,5,6,8,10  198,246 Дж  2,82 
Условные обозначения: Emink=минимальная энергия 
Pathk 

 
Повторная оценка параметров с помощью 

алгоритма Баума-Уэлча, использованного в 
предыдущем процессе обратного отслеживания 
Витерби, стабилизирует систему на оптималь-
ном скрытом пути: 

 
=E1, E2, E3, E3, E3, E1, E1, E1, E2, E3, E1  
P(Y׀׀)=2.24e-045. 
 
То же самое наблюдается  в скрытой по-

следовательности. Только вероятность получе-
ния начальной последовательности, заданной 
моделью, значительно повышается. Начальный 
маршрут - E1 с пятью повторениями, а резерв-
ный - E3 с тремя повторениями. Оценивается 
наилучшая общая вероятность управления по-
токами данных  (BRP) использования энергоре-
сурса в течение определенного времени. На 
рис. 4 показано вероятное поведение системы 
при использовании энергии в начале управле-
ния потоками данных. Вероятность высока, 
учитывая временной ряд YT и модель k. 

На рис. 4 показана тенденция изменения 
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Чтобы сгенерировать последовательность сим-
волов O(10)= Yt, более вероятно начать сначала 
с состояния t1=E1, затем t2=E2 и закончить в мо-
мент времени T=10 в состоянии t10=E1. Макси-
мальная вероятность может показаться очень 
малой, но это нормально. Существует множе-
ство возможных последовательностей скрытых 
состояний, которые могут быть сгенерированы 
в количестве порядка MT [6], эквивалентном 310 
в нашем конкретном случае. 

 
Таблица 7  

Максимальная оценка управления потоками 
данных 

Скрытая последовательность  Вероятность 
E1,E2,E3,E3,E3,E1,E1,E1,E2,E3,E3  4.59e-04 

 
Заключение 

 
1. В работе представлен стохастический 

подход к управлению потоками данных в мо-
бильных AD-HOC сетях (MANET), основанный 
на использовании скрытых марковских моде-
лей (HMM) для определения оптимальных 
маршрутов передачи данных. Разработана 
взаимосвязанная эргодическая модель, в кото-
рой алгоритм Витерби применяется для деко-
дирования скрытых состояний и выбора крат-
чайшего пути с минимальным энергопотребле-
нием, а алгоритм Баума–Уэлча используется 
для оптимизации параметров модели и уточне-
ния вероятностных переходов. 

2. Результаты моделирования, выполнен-
ного в среде NS2 (версия 2.35), показали, что 
предложенный метод обеспечивает снижение 
среднего энергопотребления сети примерно на 

19,05 % по сравнению с базовым протоколом 
AODV. При этом наблюдается повышение ста-
бильности маршрутизации и уменьшение на-
кладных расходов на управление потоками 
данных. Проведённый анализ подтвердил эф-
фективность стохастической модели в условиях 
динамически изменяющейся топологии сети и 
ограниченных энергетических ресурсов узлов. 

3. Полученные результаты свидетельст-
вуют о перспективности применения стохасти-
ческих методов в задачах энергоэффективной 
маршрутизации и могут быть использованы 
при дальнейшем развитии протоколов управле-
ния потоками данных в MANET и WSN-сетях. 
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STOCHASTIC SHORTEST PATH SEARCH USING FLOW CONTROL PARAMETERS BASED 

ON DYNAMIC ROUTING PROTOCOL FOR MOBILE AD-HOC NETWORKS 
 

A.E. Husein, N.A. Ryndin  
 

Voronezh State Technical University, Voronezh, Russia 
 

Abstract: this paper presents a stochastic approach to data flow management in mobile ad hoc networks (MANETs), 
aimed at improving energy efficiency and routing stability under dynamically changing network topologies. The proposed 
method is based on hidden Markov models (HMM), which describe probabilistic dependencies between node states and their 
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energy characteristics. An interconnected ergodic model has been developed, where the Viterbi algorithm is employed to de-
code hidden states and determine the optimal data transmission route with minimal energy consumption, while the Baum–
Welch algorithm provides adaptive optimization of model parameters based on the observed energy levels of network nodes. 
The simulation, performed using the NS2 network simulator (version 2.35), demonstrated a reduction in the network’s average 
energy consumption by 19.05% compared with the baseline AODV protocol, along with decreased routing overhead and im-
proved data delivery stability. The obtained results confirm the effectiveness of stochastic modeling in constructing intelligent 
routing algorithms that balance quality of service and energy efficiency. The developed method can be applied to the design of 
energy-efficient data flow management protocols for MANET and WSN environments operating under distributed and re-
source-constrained conditions 

 
Key words: flow management, data flows, shortest path, robabilistic routing, AD-HOC networks, dynamic routing 

protocol, Viterbi algorithm 
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