Применение адгезивноволоконных конструкций для восстановления включенных дефектов зубного ряда


Цитировать

Полный текст

Аннотация

Адгезивные мостовидные протезы, выполненные прямым способом за один визит пациента, позволяют провести восстановление единичных включенных дефектов зубного ряда с минимальным препарированием опорных зубов. В обзоре рассматриваются вопросы прочности и эстетики создаваемых конструкций в зависимости от вида волоконной арматуры и применяемого композиционного материала.

Об авторах

Зелимхан Мухтарович Абаев

ГБОУ ВПО «Первый МГМУ им. И.М. Сеченова»

Автор, ответственный за переписку.
Email: zorina-cniis@yandex.ru

д-р мед. наук, профессор

119991, г. Москва

Л. А Северина

ГБОУ ВПО «Первый МГМУ им. И.М. Сеченова»

Email: info@eco-vector.com
119991, г. Москва

Список литературы

  1. Абаев З.М., Беркутова И.С., Домашев Д.И., Рехвиашвили Б.А., Зорина О.А. Качество жизни пациентов с различными формами пародонтита. Пробл. соц. гиг., здравоохр. и истории мед. 2012; (4): 33-5.
  2. Kim H., Song M.J., Shin S.J. et al. Esthetic rehabilitation of single anterior edentulous space using fiber-reinforced composite. Restor. Dent. Endod. 2014; 39 (3): 220-5.
  3. Радлинский С.В. Адгезивные мостовидные конструкции. ДентАрт. 1998; 2: 28-40.
  4. Piovesan E.M., Demarco F.F., Piva E. Fiber-reinforced fixed partial dentures: a preliminary retrospective clinical study. J. Appl. Oral Sci. 2006; 14: 100-4.
  5. Pereira C.L., Demarco F.F., Cenci M.S. et al. Flexural strength of composites: influences of polyethylene fiber reinforcement and type of composite. Clin. Oral. Invest. 2003; 7: 116-9.
  6. Vallittu P.K. Survival rates of resin-bonded, glass fiber-reinforced composite fixed partial dentures with a mean follow-up of 42 months: a pilot study. J. Prosthet Dent. 2004; 91: 241-6.
  7. van Heumen C.C., Kreulen C.M., Creugers N.H.J. Clinical studies of fiber-reinforced resin-bonded FPDs: systematic review. Eur. J. Oral Sci. 2009; 117: 1-6.
  8. Клемин В.А., Жданов В.Е., Кубаренко В.В. и др. Адгезивные мостовидные протезы. Стоматолог-практик. 2015; (1): 40-2.
  9. Cehreli M.C., Akkocaoglu M., Comert A. et al. Human ex vivo bone tissue strains around natural teeth vs. immediate oral implants. Clin. Oral Implants Res. 2005; 16: 540-8.
  10. Khetarpal A., Talwar S., Verma M. Creating a single-visit, fibre-reinforced, composite resin bridge by using a natural tooth pontic: A viable alternative to a PFM bridge. J. Clin. Diagn. Res. 2013; 7 (4): 772-5.
  11. Гришин С.Ю. Клинико-лабораторное обоснование восстановления единичных включенных дефектов зубного ряда армированными адгезивными мостовидными протезами собственной конструкции: Дисс. … канд. мед. наук. Екатеринбург; 2006.
  12. Strassler H.E. Single visit natural tooth pontic bridge with fiber reinforcement ribbon. Tex. Dent. J. 2007; 124 (1): 110-3.
  13. Shinya A., Yokoyama D., Lassila L.V. et al. Three-dimensional finite element analysis of metal and FRC adhesive fixed dental prostheses. J. Adhes. Dent. 2008; 10: 365-71.
  14. Al-Darwish M., Hurley R.K., Drummond J.L. Flexure strength evaluation of a laboratory-processed fiber-reinforced composite resin. J. Prosthet. Dent. 2007; 97: 266-70.
  15. Dyer S.R., Lassila L.V., Jokinen M. et al. Effect of fiber position and orientation on fracture load of fiber-reinforced composite. Dent. Mater. 2004; 20: 947-55.
  16. Freilich M.A., Meiers J.C., Duncan J.P. et al. Clinical evaluation of fiberreinforced fixed bridges. J. Am. Dent. Assoc. 2002; 133: 1524-34.
  17. Garoushi S., Vallittu P. Fiber-reinforced composites in fixed partial dentures. Libyan J. Med. 2006; 1: 73-82.
  18. Oshagh M., Sadeghi A.R., Sharafeddin F. et al. Forced eruption by fiberreinforced composite. Dentistry Today. 2009; 28: 66-70.
  19. Дворникова Т.С. Волоконное армирование в повседневной клинической практике Часть 3. Армирование реставраций зоны улыбки. Институт стоматологии. 2010; (1): 44-7.
  20. Луцкая И.К., Новак Н.В., Кавецкий В.П. Обоснование выбора метода моделирования адгезивной волоконной конструкции. Современная стоматология. 2014; (1): 41-5.
  21. Zhang M., Matinlinna J.P. E-glass fiber reinforced composites in dental applications. Silicon. 2012; 4: 73-8.
  22. Schürmann H. Konstruieren mit Faser-Kunststoff Verbunden. 2., bearbeitete und erweiterte Auflage. Berlin; Heidelberg: Springer Verlag; 2007.
  23. Петрухина Н.Б., Аймадинова Н.К., Зорина О.А. Использование стекловолоконных конструкций для замещения включенных дефектов зубных рядов и шинирования подвижных зубов. Стоматология для всех. 2012; (1): 16-20.
  24. Ellakwa A.E., Shortall A.C., Marquis P.M. Influence of fiber type and wetting agent on the flexural properties of an indirect fiber reinforced composite. J. Prosthet. Dent. 2002; 88: 485-90.
  25. Keulemans F., Palav P., Aboushelib M.M. et al. Fracture strength and fatigue resistance of dental resin-based composites. Dent. Mater. 2009; 25: 1433-41.
  26. Sharafeddin F., Alavi A.A., Talei Z. Flexural strength of Glass and polyethylene fiber combined with three different composites. J. Dent. (Shiraz). 2013; 14 (1): 13-9.
  27. Karmaker A., Prasad A. Effect of design parameters on the flexural properties of fibre-reinforced composites. J. Mater. Sci. Lett. 2000; 19: 663-5.
  28. Garoushi S., Lassila L.V., Tezvergil A., Vallittu P.K. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. Dent. Mater. 2007; 23: 17-23.
  29. Kunzelmann K.-H. Aufbau der Kompositfüllungswerkstoffe. In: Kappert H.F., Eichner K. Zahnärztliche Werkstoffe und ihre Verarbeitung. Bd 2: Werkstoffe unter klinischen Aspekten. 6 Auflage. Stuttgart; New York: Georg Thieme Verlag; 2008.
  30. Soares L.E., Liporoni P.C., Martin A.A. The effect of soft-start polymerization by second generation LEDs on the degree of conversion of resin composite. Oper. Dent. 2007; 32: 160-5.
  31. Hammouda I.M. Reinforcement of conventional glass-ionomer restorative material with short glass fibers. J. Mech. Behav. Biomed. Mater. 2009; 2: 73-81.
  32. Cekic-Nagas I., Ergun G., Vallittu P.K., Lassila L.V. Influence of polymerization mode on degree of conversion and micropush-out bond strength of resin core systems using different adhesive systems. Dent. Mater. J. 2008; 27: 376-85.
  33. Eronat N., Candan U., Türkün M. Effects of glass fiber layering on the flexural strength of microfill and hybrid composites. J. Esthet. Restor. Dent. 2009; 21: 171-8.
  34. Tsushima S., Gomi H., Shinya A. et al. Effect of commercially available bonding agents impregnated with fibers on bending strength of hybrid resin. Dent. Mater. J. 2008; 27: 723-9.
  35. Shi L., Fok A.S. Structural optimization of the fibre-reinforced composite substructure in a three-unit dental bridge. Dent. Mater. 2009; 25: 791-801.
  36. Мокренко Е.В., Семикозов О.В. Особенности формирования волоконных опорно-армирующих конструкций при адгезивном протезировании зубных рядов. Клиническая стоматология. 2006; (26): 26-9.
  37. Malferrari S., Monaco C., Scotti R. Clinical evaluation of teeth restored with quartz fiber-reinforced epoxy resin posts. Int. J. Prosthodont. 2003; 16: 39-44.
  38. Li W., Swain M.V., Li Q. et al. Fibre reinforced composite dental bridge. Experimental investigation. Biomaterials. 2004; 25: 4987-93, 4995-5001.
  39. Monaco C., Ferrari M., Miceli G.P., Scotti R. Clinical evaluation of fiberreinforced composite inlay FPDs. Int. J. Prosthodont. 2003; 16: 319-25.
  40. Matheus T.C., Kauffman C.M., Braz A.K. et al. Fracture process characterization of fiber-reinforced dental composites evaluated by optical coherence tomography, SEM and optical microscopy. Braz. Dent. J. 2010; 21: 420-7.

© ООО "Эко-Вектор", 2016


 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах