COPPER (II) OXIDE NANOPARTICLES TOXICITY AND POTENTIAL HUMAN HEALTH HAZARDS

封面

如何引用文章

全文:

详细

Introduction: Copper (II) oxide nanoparticles (CuO NPs) are used in various spheres of economic activity, which provides an increase in the global production of this nanomaterial and products containing it. The wide distribution of CuO NPs increases the risk of their pollution of environmental objects, which in turn can lead to exposure of the population warranting research on physical and toxic parameters of CuO NPs. Aim: Scientific forecasting of toxicity and evaluation of potential hazard of the biological action of CuO NPs for human health. Methods: Forecasting toxicity and assessment of potential hazard was carried out according to the results of forecasting-analytical modeling complexes of indicators characterizing physico-chemical, molecular biological, cytological, physiological and ecological properties with calculation coefficients of hazard (D) and incompleteness of data evaluation (U) of nanoscale CoO. Particle size was establishment by the method of scanning electron microscopy, specific surface area - by the method of Brunauer, Emmet and Teller, shape and surface character - by the method of image analysis using the universal software ImageJ-FiJi. Results: CuO NPs have an average size of 45,86 nm, angular shape, rough surface with a specific area of 17,70 m2/g. Solubility, charge, adsorption capacity and resistance to aggregation of CuO NPs depend on the pH of the medium. Nanoparticles of the studied material have the ability to generate reactive oxygen species, destroy cell membrane, disrupt functions of cellular ultrastructures, cause disruption of proteomic profile and damage of proteins, DNA fragmentation, which leads to cell death. CuO NPs have the ability to causing pathomorphological changes of tissues of liver, kidney, gastric and lungs. Have such long-term effects of action: genotoxicity, immunotoxicity, carcinogenicity. CuO NPs are used in many areas of economic activity, due to which the volume of production of this nanomaterial increases, which can contribute to the exposure of the human population throughout the country. Based on the results of forecasting modeling the coefficient of potential hazard (D) CuO NPs was 2.163; the coefficient of incompleteness of the assessment (U) - 0.03, which confirms the reliability of the assessment. Conclusions: CuO NPs are highly likely to represent a significant risk for human health. The results warrant more toxicological studies and further research on the effect of CuO NPs depending on the route of intake with the further going aim to develop effective preventive measures for the exposed.

作者简介

N. Zaitseva

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

M. Zemlyanova

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Perm State National Research University; Perm National Research Polytechnic University

Email: zem@fcrisk.ru
доктор медицинских наук, доцент, зав. отделом биохимических и цитогенетических методов диагностики; проф. кафедры экологии человека и безопасности жизнедеятельности

M. Stepankov

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Perm State National Research University

A. Ignatova

Perm State National Research University; Perm National Research Polytechnic University

参考

  1. Обзор мирового и российского нанотехнологического рынка / Фонд инфраструктурных и образовательных программ. Группа РОСНАНО. URL: https://fiop.site/o-fonde/ godovye-otchety/2018/?/ru/30-overview-of-the-global-and-russian-nanotechnology-market (дата обращения: 13.07.2020)
  2. Alarifi S., Ali D., Verma A., Verma A., Alakhtani S., Ali B. A. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. International Journal of Toxicology. 2013, 32 (4), pp. 296-307. DOI: 10.1 177/1091581813487563
  3. Ameh T., Sayes C. M. The potential exposure and hazards of copper nanoparticles: A review. Environmental Toxicology and Pharmacology. 2019, 71, 8 p. doi: 10.1016/j.etap.2019.103220
  4. Reddy A. R. N. Copper oxide nanoparticles induces oxidative stress and liver toxicity in rats following oral exposure. Toxicol Rep. 2018, 5, pp. 903-904. DOI: 10.1016/j. toxrep.2018.08.022
  5. Benefits and Applications. National. Nanotechnology Initiative. Available from: https://www.nano.gov/you/nanotechnology-benefits (accessed: 13.07.2020).
  6. Bugata L. S. P., Venkata P. P., Gundu A. R., Fazlur R. M., Reddy U. A., Kumar J. M., Mekala V R., Bojja S., Mahboob M. Acute and subacute oral toxicity of copper oxide nanoparticles in female albino Wistar rats. J. Appl. Toxicol. 2019, 39 (5), pp. 702-716. doi: 10.1002/jat.3760
  7. Copper Oxide (CuO) nanoparticles - Properties, Applications. Azonano [2013]. Available from: https://www.azonano.com/article.aspx?ArticleID=3395 (accessed: 13.07.2020).
  8. Copper oxide (CuO) Nanopowder/Nanoparticles. US Research Nanomaterials, Inc. [2017]. Available from: https://n.b5z.net/i/u/10091461/f/MSDS-NANOPOWDERS/US3063.pdf (accessed: 08.09.2021)
  9. Edelmann M. J., Shack L. A., Naske C. D., Walters K. B. and Nanduri B. SILAC-Based Quantitative Proteomic Analysis of Human Lung Cell Response to Copper Oxide Nanoparticles. PLoS ONE. 2014, 9 (12), 32 p. doi: 10.1371/journal. pone.0114390
  10. Fahmy B. and Cormier S. A. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology in Vitro. 2009, 23 (7), pp. 1365-1371. doi: 10.1016/j.tiv.2009.08.005
  11. Farghali A. A., Bahgat M., Enaiet Allah A., Khedr M. H. Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef University Journal of Basic and Applied Science. 2013, 2 (2), pp. 61-71. doi: 10.1016/j.bjbas.2013.01.001
  12. Gosens I., Cassee F. R., Zanella M., Manodori L., Brunelli A., Costa A. L., Bokkers B. G. H., Jong W H., Brown D., Hristozov D. and Stone V. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after shortterm inhalation exposure. Nanotoxicology. 2016, 10 (8), pp. 1084-1095. doi: 10.3109/17435390.2016.1172678
  13. Hou J., Wang X., Hayat T., Wang X. Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms. Environmental Pollution. 2017, 221, pp. 209217. doi: 10.1016/j.envpol.2016.11.066
  14. Jong W. H., Rijk E., Bonetto A., Wohlleben W., Stone V., Brunelli A., Badetti E., Marcomini A., Gosens I., Cassee F. R. Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats. Nanotoxicology. 2019, 13, (1), pp. 50-72. doi: 10.1080/17435390.2018.1530390
  15. Karlsson H. L., Cronholm P., Gustafsson J. Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicilogy. 2008, 21 (9), pp. 17261732. doi: 10.1021/tx800064j
  16. Lee I.-C., Ko J.-W., Park S.-H., Shin N.-R., Moon C., Kim J.-H., Kim H.-C., Kim J.-C. Comparative toxicity and biodistribution assessments in rats following subchronic oral exposure to copper nanoparticles and microparticles. Particle and Fibre Toxicology. 2016, 13 (56), 16 p. DOI: 10.1186/ s12989-016-0169-x
  17. Liu X., Jiang Z., Li J., Zhang Z., Ren L. Superhydrophobic property of nano-sized cupric oxide films. Surface & Coating Technology. 2010, 204 (20), pp. 3200-3204. doi: 10.1016/j.surfcoat.2010.03.012
  18. Maciel-Magalhaes M., Medeiros R. J., Bravin J. S., Patricio B. F. C., Rocha H. V. A., Paes-de-Almeida E. C., Santos L. M. G., Jacob S. C., Savignon T. C. M., Amendoeira F. C. Evaluation of acute toxicity and copper accumulation in organs of Wistar rats, 14 days after oral exposure to copper oxide (II) nano- and microparticles. J. Nanopart. Res. 2020, 22 (2), 11 p. doi: 10.1007/s1 1051-019-4721-0
  19. Naz S., Gul A., Zia M. Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnol. 2020, 14 (1), pp. 1-13. doi: 10.1049/iet-nbt.2019.0176
  20. Peng C., Shen C., Zheng S., Yang W., Hu H., Liu J., Shi J. Transformation of CuO nanoparticles in the aquatic environment: influence of pH, electrolytes and natural organic matter. Nanomaterials (Basel). 2017, 7 (10), 326, 16 p. doi: 10.3390/nano7100326
  21. Perreault F., Melegari S. P., Costa C. H., Olivera Franco Rossetto A. L., Popovic R., Matias W G.Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Science of The Total Environment. 2012., 441, pp. 117-124. doi: 10.1016/j.scitotenv.2012.09.065
  22. Privalova L. I., Katsnelson B. A., Loginova N. V., Gurvich V. B., Shur V. Y., Valamina I. E., Makeyev O. H., Sutunkova M. P., Minigalieva I. A., Kireyeva E. P., Rusakov V. O., Tyurnina A. E., Kozin R. V., Meshtcheryakova E. Y., Korotkov A. V, Shuman E. A., Zverena A. E., Kostyakova S. V. Subchronic Toxicity of Copper Oxide Nanoparticles and Its Attenuation with the Help of a Combination of Bioprotectors. Int JMol Sci. 2014, 15 (7), pp. 12379-12406. DOI: 10.3390/ ijms150712379
  23. Redza-Dutordoir M., Averill-Bates D. A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et BiophysicaActa (BBA) - Molecular Cell Research. 2016, 1863 (12), pp. 2977-2992. DOI: 10.1016/j. bbamcr.2016.09.012
  24. Sarkar A., Das J., Manna P., Sil P. C. Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology. 201 1, 290 (2-3), pp. 208-217. doi: 10.1016/j.tox.2011.09.086
  25. Sridharan K. Emerging trends of Nanotechnology in sustainability and environment: A review based approach. Springer. 2018, 126 p. doi: 10.1007/978-3-319-71327-4
  26. Strauch B. M., Hubele W., Hartwig A. Impact of Endocytosis and Lysosomal Acidification on the Toxicity of Copper Oxide Nano- and Microsized Particles: Uptake and Gene Expression Related to Oxidative Stress and the DNA Damage Response Nanomaterials. 2020, 10 (4), 15 p. doi: 10.3390/nano10040679
  27. Sukhanova A., Bozrova S., Sokolov P., Beresovoy M., Karaulov A., Nabiev I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Research Letters. 2018, 13 (44), 21 p. doi: 10.1186/s11671-018-2457-x
  28. Thit A., Selck H. and Bjerregaard H. F. Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells. Toxicology in Vitro. 2015, 29 (5), pp. 1053-1059. doi: 10.1016/j.tiv.2015.03.020
  29. Triboulet S., Aude-Garcie C., Armand L., Collin-Faure V, Chevallet M., Diemer H., Gerdil A., Proamer F., Strub J.-M., Habert A., Herlin N., Dorsselaer A. V., Carriere M., Rabilloud T. Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages. PLoS ONE. 2015, 10 (4), 22 p. doi: 10.1371/journal.pone.0124496
  30. Zanoni I., Crosera M., Ortelli S., Blosi M., Adami G., Filon F. L., Costa A. L. CuO nanoparticle penetration through intact and damaged human skin. New J. Chem. 2019, 43, pp. 17033-17039. doi: 10.1039/C9NJ03373D
  31. Zhang J., Zou Z., Wang B., Xu G., Wu Q., Zhang Y., Yuan Z., Yang X., Yu C. Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death. Biomaterials. 2018, 161, pp. 228-239. DOI: 10.1016/j. biomaterials.2018.01.048

版权所有 © Zaitseva N.V., Zemlyanova M.A., Stepankov M.S., Ignatova A.M., 2021

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


##common.cookie##