基于横断面研究的室内空气中PM2,5所含金属和类金属对人群健康风险的评估
- 作者: Krupnova T.G.1, Rakova O.V.1, Gavrilkina S.V.2
-
隶属关系:
- South Ural State University
- South Urals Federal Research Center of Mineralogy and Geoecology of the Urals Branch of the Russian Academy of Sciences
- 期: 卷 32, 编号 11 (2025)
- 页面: 811-821
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journals.rcsi.science/1728-0869/article/view/362969
- DOI: https://doi.org/10.17816/humeco693896
- EDN: https://elibrary.ru/HTRHNK
- ID: 362969
如何引用文章
全文:
详细
论证。气动学当量直径小于2.5 μm的细颗粒物(PM2,5)是对人体健康危害最显著的大气污染物之一。此前在俄罗斯尚未开展针对室内空气中含潜在毒性金属和类金属的PM2,5对健康风险的研究。
目的。研究室内空气中PM2,5的含量,分析PM2,5中金属和类金属的组成,并评估其在Chelyabinsk吸入暴露所致的健康风险。
方法。在2024–2025年期间于Chelyabinsk的大学教室(n=3)、实验室(n=3)、宿舍房间(n=4)及居民公寓(n=14)采集室内空气样品,覆盖PM2,5低污染季节(11月—次年3月)和高污染季节(4–10月)。采用级联撞击器在聚碳酸酯滤膜上收集PM2,5。PM2,5浓度通过将滤膜的质量增量除以通过采样器的空气体积来确定。金属和类金属(Al、As、Cd、Co、Cr、Cu、Fe、Mn、Ni、Pb、Zn)浓度采用电感耦合等离子体质谱法测定。依据所得数据计算致癌性与非致癌性风险。
结果。各类室内场所之间浓度的差异在低污染季(p=0.287)和高污染季(p=0.966)均无统计学意义;而低污染季与高污染季之间的差异具有统计学意义(p<0.001)。低污染季PM2,5浓度为5–31 μg/m3,中位数16 μg/m3。高污染季PM2,5浓度为13–59 μg/m3,中位数为 32 μg/m3。非致癌风险评估显示,呼吸系统(HIresp)受影响程度高于神经系统(HIneuro)。 成年人非致癌风险处于最低或可接受水平;儿童的非致癌风险在不同暴露情境下呈现从高水平(HIresp=6.42)和中等水平(HIresp 3.10–3.75;HIneuro 3.17–5.19)到可接受不等。不同暴露情境下,成年人和儿童的致癌风险均处于可接受范围(总体风险为5.71×10–6 至4.66×10–5)。
结论。儿童所呈现的高水平和中等水平的非致癌健康风险要求制定专门的干预措施。
作者简介
Tatyana G. Krupnova
South Ural State University
编辑信件的主要联系方式.
Email: krupnovatg@susu.ru
ORCID iD: 0000-0003-0862-710X
SPIN 代码: 3000-8535
Cand. Sci. (Chemistry), Associate Professor
俄罗斯联邦, ChelyabinskOlga V. Rakova
South Ural State University
Email: rakovaov@susu.ru
ORCID iD: 0000-0002-5788-5933
SPIN 代码: 6508-1984
Cand. Sci. (Chemistry)
俄罗斯联邦, ChelyabinskSvetlana V. Gavrilkina
South Urals Federal Research Center of Mineralogy and Geoecology of the Urals Branch of the Russian Academy of Sciences
Email: gidrosv@mail.ru
ORCID iD: 0000-0002-9892-226X
SPIN 代码: 4626-8291
Cand. Sci. (Geology and Mineralogy)
俄罗斯联邦, Miass参考
- Vahlsing C, Smith KR. Global review of national ambient air quality standards for PM(10) and SO(2) (24h). Air Qual Atmos Health. 2012;(5):393–399. doi: 10.1007/s11869-010-0131-2
- Revich BA. Fine suspended particulates in ambient air and their health effects in megalopolises. Environmental Monitoring and Ecosystem Modelling. 2018;29(3):53–78. doi: 10.21513/0207-2564-2018-3-53-78 EDN: YRXUVF
- Barskova LS, Vitkina TI, Veremchuk LV, Gvozdenko TA. Assessment of the influence of the composition of atmospheric microparticles on redox homeostasis of alveolar macrophages. Hygiene and Sanitation. 2022;101(9):1004–1010. doi: 10.47470/0016-9900-2022-101-9-1004-1010 EDN: ADUQKY
- Burnett R, Chen H, Szyszkowicz M, et al. Global estimates of mortality associated with longterm exposure to outdoor fine particulate matter. Proc Natl Acad Sci USA. 2018;115(38):9592–9597. doi: 10.1073/pnas.1803222115
- Altieri KE, Keen SL. Public health benefits of reducing exposure to ambient fine particulate matter in South Africa. Sci Total Environ. 2019;(684):610–620. doi: 10.1016/j.scitotenv.2019.05.3552
- Meo SA, Salih MA, Al-Hussain F, et al. Environmental pollutants PM2.5, PM10, carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) impair human cognitive functions. Eur Rev Med Pharmacol Sci. 2024;28(2):789–796. doi: 10.26355/eurrev_202401_35079
- Pope CA 3rd, Burnett RT, Thun MJ, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of the American Medical Association. 2002;287(9):1132–1141. doi: 10.1001/jama.287.9.1132
- Turner MC, Krewski D, Pope CA 3rd, et al. Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am J Respir Crit Care Med. 2011;184(12):1374–1381. doi: 10.1164/rccm.201106–1011OC
- Ali MU, Liu G, Yousaf B, et al. A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environ Geochem Health. 2019;(41):1131–1162. doi: 10.1007/s10653-018-0203-z
- Yang YW, Liou SH, Hsueh YM, et al. Risk of Alzheimer's disease with metal concentrations in whole blood and urine: A case-control study using propensity score matching. Toxicology and Applied Pharmacology. 2018;356:8–14. doi: 10.1016/j.taap.2018.07.015
- Tellez-Plaza M, Guallar E, Navas-Acien A. Environmental metals and cardiovascular disease. BMJ. 2018;362:k3435. doi: 10.1136/bmj.k3435
- Zhang Y, Xu C, Fu Z, et al. Associations between total mercury and methyl mercury exposure and cardiovascular risk factors in US adolescents. Environ Sci Pollut Res Int. 2018;25(7):6265–6272. doi: 10.1007/s11356-017-0905-2
- Grau-Perez M, Zhao J, Pierce B, et al. Urinary metals and leukocyte telomere length in American Indian communities: The Strong Heart and the Strong Heart Family Study. Environ Pollut. 2019;(246):311–318. doi: 10.1016/j.envpol.2018.12.010
- Velmurugan G, Swaminathan K, Veerasekar G, et al. Metals in urine in relation to the prevalence of pre-diabetes, diabetes and atherosclerosis in rural India. Occup Environ Med. 2018;75(9):661–667. doi: 10.1136/oemed-2018-104996
- Longnecker MP, Daniels JL. Environmental contaminants as etiologic factors for diabetes. Environ Health Perspect. 2001;109(Suppl 6): 871–876. doi: 10.1289/ehp.01109s6871
- Bell DSH. Riceabetes: Is the association of type 2 diabetes with rice intake due to a high carbohydrate intake or due to exposure to excess inorganic arsenic? Postgrad Med. 2015;127(8):781–782. doi: 10.1080/00325481.2015.1098518
- Lee J, Lee S, Bae G. A review of the association between air pollutant exposure and allergic diseases in children. Atmospheric Pollution Research. 2014;5(4):616–629. doi: 10.5094/APR.2014.071
- Krupnova TG, Rakova OV, Bondarenko KA, et al. Elemental composition of PM2.5 and PM10 and health risks assessment in the industrial districts of Chelyabinsk, South Ural Region, Russia. International Journal of Environmental Research and Public Health. 2021;18(23):12354. doi: 10.3390/ijerph182312354
- Klepeis NE, Nelson WS, Ott WR, et al. The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol. 2001;11(3):231–252. doi: 10.1038/sj.jea.7500165
- Fang B, Zeng H, Zhang L, et al. Toxic metals in outdoor/indoor airborne PM2.5 in port city of Northern, China: Characteristics, sources, and personal exposure risk assessment. Environ Pollut. 2021;279:116937. doi: 10.1016/j.envpol.2021.116937
- Liu J, Chen H, Qiao S, Zhang Y. Indoor/outdoor relationships of PM2.5-associated toxic metals/metalloids at a rural residence in North China: sources and probabilistic health risks. Atmospheric Pollution Research. 2023;14(5):101753. doi: 10.1016/j.apr.2023.101753
- Jung CC. Investigation of source and infiltration of toxic metals in indoor PM2.5 using Pb isotopes during a season of high pollution in an urban area. Environ Geochem Health. 2023;46(1):7. doi: 10.1007/s10653-023-01801-7
- Jung CC, Chung YJ, Chiang TY, et al. Evaluating the representativeness of atmospheric PM2.5 data for indoor exposure: insights from concentrations, chemical compositions, and sources. Environ Pollut. 2025;375:126350. doi: 10.1016/j.envpol.2025.126350
- Dolgushina NA, Kuvshinova IA. Air pollution and noncancenogenic risks assessment in industrial cities of Chelyabinsk region. Ekologiya cheloveka (Human Ecology). 2019;26(6):17–22. doi: 10.33396/1728-0869-2019-6-17-22 EDN: AHPZTI
- Krupnova TG, Mashkova IV, Scalev ED, et al. Concentrations of metal(loid)s in outdoor and indoor dust from Russian City. International Journal of Geomate. 2018;15(52):30–37. doi: 10.21660/2018.52.8197 EDN: BLHCBN
- Krupnova TG, Rakova OV, Mashkova IV, et al. Health risk assessment of metal(loid)s exposure via indoor dust from urban area in Chelyabinsk, Russia. International Journal of Geomate. 2019;16(55):1–7. doi: 10.21660/2019.55.16501 EDN: OBLWPP
- Lee SC, Li WM, Ao CH. Investigation of indoor air quality at residential homes in Hong Kong-case study. Atmospheric Environment. 2002;36(2):225–237. doi: 10.1016/S1352-2310(01)00435-6
- Polezer G, Oliveira A, Potgieter-Vermaak S, et al. The influence that different urban development models has on PM2.5 elemental and bioaccessible profiles. Sci Rep. 2019;9(1):14846. doi: 10.1038/s41598-019-51340-4
补充文件

