自闭症谱系障碍儿童的毛发矿物图谱
- 作者: Lugovaya E.A.1, Gorbachev A.L.1
-
隶属关系:
- Research Center "Arctic" Far Eastern Branch of the Russian Academy of Sciences
- 期: 卷 32, 编号 11 (2025)
- 页面: 775-786
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journals.rcsi.science/1728-0869/article/view/362965
- DOI: https://doi.org/10.17816/humeco691942
- EDN: https://elibrary.ru/GMIGDK
- ID: 362965
如何引用文章
全文:
详细
论证。自闭症谱系障碍常伴随多种躯体共病,因此需要建立可靠的预测性诊断方法。毛发元素分析可反映机体长期代谢状态,有助于识别个体微量元素失衡,并制定个体化矫正方案以预防相关紊乱。
目的。评估毛发矿物图谱作为预测自闭症谱系障碍儿童躯体共病风险的潜在生物标志物,并用于个体化矫正策略的制定。
方法。对Magadan地区36名诊断为“广泛性发育障碍”的儿童(第1组)及64名对照儿童(第2组)毛发中25种宏/微量元素进行光谱检测。开展元素绝对含量逐步分析、组间偏离参考值频率比较、相关分析,并建立第1组元素失衡公式。
结果。第1组毛发中钾、钴含量显著高于第2组,铁、硒、锰、铬、硅、砷含量更低(p<0.05)。偏离参考值频率分析显示:锰缺乏(第1组44%,第2组23%)、锌缺乏(第1组25%,第2组50%)、磷缺乏(第1组86%,第2组42%)、钠缺乏(第1组39%,第2组17%)。首次发现第1组存在硅缺乏(42%),该特征在Magadan人群中并不典型。第1组相关性网络的中心元素为锰,并与铁和锌存在显著正相关(r>0.7;p<0.05)。
结论。自闭症谱系障碍儿童的元素失衡公式包括钒过量及钠、硅、锰、磷缺乏,这些改变是在同一组儿童存在典型“北方型”低钙、低镁、低钴、低碘背景下表现出来的。毛发中未发现铁和硒缺乏,这可能表明其摄入量充足,但由于“肠漏”导致吸收受限,从而无法参与并维持正常代谢。研究结果揭示了自闭症谱系障碍中生物元素系统组织的基本规律,并提示该系统可能因地区生物地球化学背景、性别、年龄及诊断特征而呈现不同变体。
作者简介
Elena A. Lugovaya
Research Center "Arctic" Far Eastern Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: elena_plant@mail.ru
ORCID iD: 0000-0002-6583-4175
SPIN 代码: 5825-7122
Cand. Sci. (Biology), Associate Professor
俄罗斯联邦, MagadanAnatoly L. Gorbachev
Research Center "Arctic" Far Eastern Branch of the Russian Academy of Sciences
Email: gor000@mail.ru
ORCID iD: 0000-0002-2432-3408
SPIN 代码: 7050-3412
Dr. Sci. (Biology)
俄罗斯联邦, Magadan参考
- Gorbachev AL. Autism. Medical and biological markers. Herald of North-Eastern State University. 2019;(32):6–12. EDN: UUZVRT
- Skalny AV, Grabeklis AR, Korobeynikova TV, et al. Reference values of the content of chemical elements in human indicator biological samples. Moscow; 2023. 58 p. (In Russ.)
- Hegde R, Hegde S, Kulkarni S, et al. Total reflection X-ray fluorescence analysis of plasma elements in autistic children from India. Biol Trace Elem Res. 2023;201(2):644–654. doi: 10.1007/s12011-022-03199-2
- Awadh SM, Yaseen ZM, Al-Suwaiyan MS. The role of environmental trace element toxicants on autism: a medical biogeochemistry perspective. Ecotoxicol Environ Saf. 2023;251:114561. doi: 10.1016/j.ecoenv.2023.114561
- Zhang J, Lin J, Zhao X, et al. Trace element changes in the plasma of autism spectrum disorder children and the positive correlation between chromium and vanadium. Biol Trace Elem Res. 2022;200(12):4924–4935. doi: 10.1007/s12011-021-03082-6
- Li H, Li H, Li Y, et al. Blood mercury, arsenic, cadmium, and lead in children with autism spectrum disorder. Biol Trace Elem Res. 2018;181(1):31–37. doi: 10.1007/s12011-017-1002-6
- Rafi'i MR, Ja'afar MH, Abd Wahil MS, Md Hanif SA. Urine manganese, cadmium, lead, arsenic, and selenium among autism spectrum disorder children in Kuala Lumpur. PeerJ. 2024;12:e17660. doi: 10.7717/peerj.17660
- Zaichick VE, Kolotov VP. Nuclear physics medical elementology as a section of medical radiology. Medical Radiology and Radiation Safety. 2024;69(2):53–64. doi: 10.33266/1024-6177-2024-69-2-53-64 EDN: UHMMRI
- Hu W, Zhao M, Lian J, et al. Lithium cholesterol sulfate: a novel and potential drug for treating Alzheimer's disease and autism spectrum disorder. CNS Neurol Disord Drug Targets. 2023;22(8):1250–1258. doi: 10.2174/1871527321666220825114236
- Mlinarič M, Jekovec Vrhovšek M, Neubauer D, et al. Association between autism spectrum disorder, trace elements, and intracranial fluid spaces. Int J Mol Sci. 2024;25(15):8050. doi: 10.3390/ijms25158050
- Daniel KS, Jiang Q, Wood MS. The increasing prevalence of autism spectrum disorder in the U.S. and its implications for pediatric micronutrient status: a narrative review of case reports and series. Nutrients. 2025;17(6):990. doi: 10.3390/nu17060990
- Getahun D, Jacobsen SJ, Fassett MJ, et al. Association between maternal hypothyroidism and autism spectrum disorders in children. Pediatr Res. 2018;83(3):580–588. doi: 10.1038/pr.2017.308
- Ge GM, Leung MTY, Man KKC, et al. Maternal thyroid dysfunction during pregnancy and the risk of adverse outcomes in the offspring: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2020;105(12):dgaa555. doi: 10.1210/clinem/dgaa555
- Lin HY, Liang CS, Tsai SJ, et al. Congenital hypothyroidism and risk of subsequent autism spectrum disorder and attention-deficit/hyperactivity disorder in Taiwan. Psychiatry Clin Neurosci. 2024;78(11):721–725. doi: 10.1111/pcn.13733
- Khan MS, Ali T, Abid MN, et al. Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain. Neurochem Int. 2017;108:343–354. doi: 10.1016/j.neuint.2017.05.008
- Damri O, Agam G. Lithium, inflammation and neuroinflammation with emphasis on bipolar disorder — a narrative review. Int J Mol Sci. 2024;25(24):13277. doi: 10.3390/ijms252413277
- Adams JB, Audhya T, McDonough-Means S, et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab (Lond). 2011;8(1):34. doi: 10.1186/1743-7075-8-34
- Manchia M, Paribello P, Pinna M et al. Lithium and its effects: does dose matter? Int J Bipolar Disord. 2024;12(1):23. doi: 10.1186/s40345-024-00345-8
- Xiong Z, Mahai G, Zheng D, et al. Effects of prenatal vanadium exposure on neurodevelopment in early childhood and identification of critical window. Environ Res. 2025;276:121506. doi: 10.1016/j.envres.2025.121506
- Lugovaya EA, Stepanova EM. Imbalance of chemical elements in the circumpolar region residents as a result of environmental geochemical influence. Herald of the Kola Science Centre of RAS. Series: Natural Sciences and Humanities. 2024;3(1):153–159. doi: 10.37614/2949-1185.2024.3.1.018 EDN: ALXXIK
- Lugovaya EA, Stepanova EM. Features of the content of drinking water in the city of Magadan and population health. Hygiene and Sanitation. 2016;95(3):241–246. doi: 10.18821/0016-9900-2016-95-3-241-246 EDN: VTNPDN
- Gorbachev AL. Trace element status and health of northern populations: a scientific review. Ekologiya cheloveka (Human Ecology). 2025;32(4):225–238. doi: 10.17816/humeco646046 EDN: ILROFE
- Lugovaya EA, Maximov AL. The element profile observed in Russia’s Northeast residents. Problems of Biological, Medical and Pharmaceutical Chemistry. 2012;(6):17–21. EDN: SFUBQJ
- Lugovaya EA, Stepanova EM. Structure of elemental disbalance observed in organism of residents of Magadan town. Public Health and Life Environment — PH&LE. 2015;(2):4–6. EDN: TQMIIL
- Lugovaya EA, Stepanova EM. Regional indicators of the content of macro- and microelements in the body of residents of Magadan. Magadan: Ekspress-poligrafiya; 2019. 27 p. (In Russ.)
- Gorbachev AL. Problem issues of mineral metabolism in residents of the Arctic territories. The Scientific and Practical Journal of Medicine. 2022;31(1): 52–61. doi: 10.25017/2306-1367-2022-31-1-52-61 EDN: WZKHCL
- Skalnaya AA, Berdalin AB, Kabki BH, Zhegalova IV. The relationship of clinical parameters and elemental status of children with autism before and after treatment. Trace elements in medicine. 2017;18(4):41−48. doi: 10.19112/2413-6174-2017-18-4-41-48 EDN: YPDTHR
- Gorbachev AL, Lugovaya EA. Features of the elemental status of children with autism spectrum disorder. Trace Elements in Medicine. 2019;20(3):20−30. doi: 10.19112/2413-6174-2019-20-3-20-30 EDN: GYOMVI
- Chernova LN, Skalny AV. Interrelation of hair elements' content with co-occurring somatic conditions in children with autism spectrum disorder. Vrach. 2021;32(11):61−65. doi: 10.29296/25877305-2021-11-12 EDN: VQLRXN
- Gorbachev AL. Some indicators of the chemical composition of drinking water and their impact on the health of the population of Magadan. Trace Elements in Medicine. 2021;22(2):17−24. doi: 10.19112/2413-6174-2021-22-2-17-24 EDN: BRKQHZ
- Pappas J, Rabin R. SETD2 Neurodevelopmental Disorders. 2021 Dec 30 [updated 2022 Sep 22]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews. Available from: https://www.ncbi.nlm.nih.gov/books/NBK575927/
- Ren M, Zheng H, Lu X, Lian W, Feng B. Expanding the genotypic and phenotypic spectrum associated with TBL1XR1 de novo variants. Gene. 2023;886:147777. doi: 10.1016/j.gene.2023.147777
- Breiner CE, McQuaid GA, Wallace GL, Zickgraf HF. Screening for avoidant/restrictive food intake disorder symptoms among autistic adults: measurement invariance with a comparison general sample. Autism Res. 2025;18(7):1381−1388. doi: 10.1002/aur.70039
- Sanders SJ, Campbell AJ, Cottrell JR, et al. Progress in understanding and treating SCN2A-mediated disorders. Trends Neurosci. 2018;41(7):442−456. doi: 10.1016/j.tins.2018.03.011
- Valenzuela-Zamora AF, Ramírez-Valenzuela DG, Ramos-Jiménez A. Food selectivity and its implications associated with gastrointestinal disorders in children with autism spectrum disorders. Nutrients. 2022;14(13):2660. doi: 10.3390/nu14132660
- Dargenio VN, Dargenio C, Castellaneta S, et al. Intestinal barrier dysfunction and microbiota-gut-brain axis: possible implications in the pathogenesis and treatment of autism spectrum disorder. Nutrients. 2023;15(7):1620. doi: 10.3390/nu15071620
- Glukhova LYu. Autistic epileptiform regression (a review). Russian Journal of Child Neurology. 2012;7(1):39−45. doi: 10.17650/2073-8803-2012-7-1-39-46 EDN: OZLVWV
- Tateishi Y, Ishikawa N, Kobayashi Y, et al. Effect of Lacosamide therapy on blood cells and IgA levels in children and adolescents with epilepsy in a clinical setting. Epilepsy Res. 2022;187:107030. doi: 10.1016/j.eplepsyres.2022.107030
- Zhou X, Xia X, Li L, et al. Evaluation of heavy metals and essential minerals in the hair of children with autism spectrum disorder and their association with symptom severity. Biol Trace Elem Res. 2025;203(11):5589–5602. doi: 10.1007/s12011-025-04588-z
- Zhao G, Liu SJ, Gan XY, et al. Analysis of whole blood and urine trace elements in children with autism spectrum disorders and autistic behaviors. Biol Trace Elem Res. 2023;201(2):627−635. doi: 10.1007/s12011-022-03197-4
- Lugovaya EA, Stepanova EM, Gorbachev AL. Approaches to the body element status assessment. Trace Elements in Medicine. 2015;16(2):10−17. EDN: TWCAXD
- Gorban AN, Smirnova EV, Cheusova EP. Group stress: dynamics correlations in adaptation and the organization of systems of environmental factors. Krasnoyarsk; 1997. 54 р. (In Russ.) URL: https://adaptometry.narod.ru/Index.htm
- Jopowicz A, Wiśniowska J, Tarnacka B. Cognitive and physical intervention in metals' dysfunction and neurodegeneration. Brain Sci. 2022;12(3):345. doi: 10.3390/brainsci12030345
- Li S, Huang P, Lai F, et al. Mechanisms of ferritinophagy and ferroptosis in diseases. Mol Neurobiol. 2024;61(3):1605–1626. doi: 10.1007/s12035-023-03640-0
- Lee K, Mills Z, Cheung P, et al. The role of zinc and NMDA receptors in autism spectrum disorders. Pharmaceuticals (Basel). 2022;16(1):1. doi: 10.3390/ph16010001
- Arora M, Reichenberg A, Willfors C, et al. Fetal and postnatal metal dysregulation in autism. Nat Commun. 2017;8:15493. doi: 10.1038/ncomms15493
- Choi EK, Aring L, Peng Y, et al. Neuronal SLC39A8 deficiency impairs cerebellar development by altering manganese homeostasis. JCI Insight. 2024;9(20):e168440. doi: 10.1172/jci.insight.168440
- Gunshin H, Mackenzie B, Berger U, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388(6641):482–488. doi: 10.1038/41343
- Powers M, Minchella D, Gonzalez-Acevedo M, et al. Loss of hepatic manganese transporter ZIP8 disrupts serum transferrin glycosylation and the glutamate-glutamine cycle. J Trace Elem Med Biol. 2023;78:127184. doi: 10.1016/j.jtemb.2023.127184
- Maares M, Einhorn V, Behrendt J, et al. Investigation of competitive binding of the essential trace elements zinc, iron, copper, and manganese by gastrointestinal mucins and the effect on their absorption in vitro. J Nutr Biochem. 2025;144:109983. doi: 10.1016/j.jnutbio.2025.109983
- Reinert A, Morawski M, Seeger J, et al. Iron concentrations in neurons and glial cells with estimates on ferritin concentrations. BMC Neurosci. 2019;20(1):25. doi: 10.1186/s12868-019-0507-7
- Mezzaroba L, Alfieri DF, Colado Simão AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology. 2019;74:230–241. doi: 10.1016/j.neuro.2019.07.007
- Lugovaya EA, Averyanova IV. Optimizing the diet of children with disabilities. Russian Bulletin of Perinatology and Pediatrics. 2022;67(1):94–100. doi: 10.21508/1027-4065-2022-67-1-94-100. EDN: NERPGR
补充文件

