以俄罗斯东北部与北高加索地区为例,探讨神经植物性调节的区域特性
- 作者: Belyayeva V.A.1, Averyanova I.V.2
-
隶属关系:
- Institute of Biomedical Investigations of Vladikavkaz Scientific Centre of the Russian Academy of Sciences, North Ossetia-Alania
- Scientific Research Center «Arktika» Far Eastern Branch of the Russian Academy of Sciences
- 期: 卷 32, 编号 5 (2025)
- 页面: 345-352
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journals.rcsi.science/1728-0869/article/view/314594
- DOI: https://doi.org/10.17816/humeco678572
- EDN: https://elibrary.ru/VGCZVC
- ID: 314594
如何引用文章
详细
论证。心率变异性是评估心血管自主神经调节功能的高度信息性指标,也是量化其生理变化的有效方法,可用于分析神经植物性调节的区域差异,尤其是在考虑不同地区气候和地理因素影响的背景下。
目的。基于心率变异性指标,研究居住在俄罗斯东北部(Magadan)和北高加索(Vladikavkaz)两个在气候条件与地形类型(低地与低山区)方面存在差异的自然气候区域人群,其心血管系统自主神经调节的区域特征及差异。
材料与方法。对89名青年男性的自主神经调节功能进行评估,其中41人为俄罗斯东北部(Magadan)本地居民(平均年龄19.8±0.5岁),48人为北高加索(Vladikavkaz)本地居民(平均年龄20.8±0.8岁)。在所有受试者中,使用“Varicard”硬件-软件系统,在静息状态(坐位)下测量心率变异性的关键参数。基于静息状态下的变异范围(MxDMn)和应激指数(SI)判断自主神经调节类型。
结果。结果表明,生活在低山区的受试者表现出自主神经功能降低的趋势,主要体现为副交感神经活动下降,植物神经平衡向交感神经激活方向偏移。而东北地区低地居民的心率变异性大多数指标处于最佳生理范围,部分参数呈现出向副交感神经主导方向的偏移。
结论。本研究表明,心率变异性指标可反映自主神经调节的区域特性,形成各自自然气候区的功能性生理参考范围。这些参数可作为机体对俄罗斯不同地区极端环境因子的客观反应标志。我们的研究进一步补充了关于神经自主调节方向偏移的科学资料:在心血管系统中,该偏移表现为向交感神经激活方向移动,作为对复合型山地气候因素(北高加索)的适应性组成部分;相反,在俄罗斯北部地区的极端气候条件下,则形成了以增强迷走神经张力为特征的自主神经调节补偿机制。
作者简介
Victoria A. Belyayeva
Institute of Biomedical Investigations of Vladikavkaz Scientific Centre of the Russian Academy of Sciences, North Ossetia-Alania
编辑信件的主要联系方式.
Email: pursh@inbox.ru
ORCID iD: 0000-0002-8126-5275
SPIN 代码: 8202-1922
Cand. Sci. (Biology)
俄罗斯联邦, v. Mikhailovskoye, North Ossetia-AlaniaInessa V. Averyanova
Scientific Research Center «Arktika» Far Eastern Branch of the Russian Academy of Sciences
Email: inessa1382@mail.ru
ORCID iD: 0000-0002-4511-6782
SPIN 代码: 9402-0363
Dr. Sci. (Biology), Professor
俄罗斯联邦, Magadan参考
- Vityazeva TA, Mikheev AA. Methods for studying heart rate variability (review). Biomedicine Radioengineering. 2024;27(4):87–95. doi: 10.18127/j15604136-202404-12 EDN: WQYLWB
- Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Front Psychol. 2014;5:1040. doi: 10.3389/fpsyg.2014.01040
- Damoun N, Amekran Y, Taiek N, Hangouche AJE. Heart rate variability measurement and influencing factors: Towards the standardization of methodology. Glob Cardiol Sci Pract. 2024;2024(4):e202435. doi: 10.21542/gcsp.2024.35
- Sammito S, Thielmann B, Seibt R, et al. Guideline for the application of heart rate and heart rate variability in occupational medicine and occupational science. ASU International Edition, 2015;06. doi: 10.17147/ASUI.2015-06-09-03
- Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258. doi: 10.3389/fpubh.2017.00258
- Lane RD, McRae K, Reiman EM, et al. Neural correlates of heart rate variability during emotion. Neuroimage. 2009;44(1):213–222. doi: 10.1016/j.neuroimage.2008.07.056
- Candia-Rivera D, Catrambone V, Thayer JF, et al. Cardiac sympathetic-vagal activity initiates a functional brain-body response to emotional arousal. Proc Natl Acad Sci USA. 2022;119(21):e2119599119. doi: 10.1073/pnas.2119599119
- Smith R, Thayer JF, Khalsa SS, Lane RD. The hierarchical basis of neurovisceral integration. Neurosci Biobehav Rev. 2017;75:274–296. doi: 10.1016/j.neubiorev.2017.02.003
- Fatisson J, Oswald V, Lalonde F. Influence diagram of physiological and environmental factors affecting heart rate variability: an extended literature overview. Heart Int. 2016;11(1):e32–e40. doi: 10.5301/heartint.5000232
- Bauche JP, Grigorieva EA, Matzarakis A. Human-biometeorological assessment of urban structures in extreme climate conditions: the example of Birobidzhan, Russian Far East. Advances in Meteorology. 2013;2013:749270. doi: 10.1155/2013/749270
- Baevsky RM, Ivanov GG, Gavrilushkin AP, et al. Analysis of heart rate variability when using various electrocardiographic systems (part 1). Journal of Arrhythmology. 2002;(24):65–86. (In Russ.) EDN: HSPLXF
- Averyanova IV, Maksimov AL. Hemodynamics and heart rate variability under orthostatic challenge test in young caucasian men: part 1. Ekologiya cheloveka (Human Ecology). 2021;28(1):22–31. doi: 10.33396/1728-0869-2021-1-22-31 EDN: WPTYOM
- Shlyk NI, Sapozhnikova EN, Kirillova TG, Semenov VG. Typoloagical characteristics of the functional state of regulatory systems in schoolchildren and young athletes (according to heart rate variability data). Fiziologiya Cheloveka. 2009;35(6):85–93. EDN: KYGHBV
- Huang CM, Chang HC, Kao ST, et al. Radial pressure pulse and heart rate variability in heat- and cold-stressed humans. Evid Based Complement Alternat Med. 2011;2011:751317. doi: 10.1155/2011/751317
- Averyanova I.V., Vdovenko S.I. Features of somatometric status and cardiohemodynamics of young men aged 17–21, permanent residents of different climatic geographic regions of Magadan region. Health. Medical Ecology. Science. 2018;(2):21–26. doi: 10.5281/zenodo.1296772 EDN: USZQNC
- Maksimov AL, Averyanova IV. Some peculiarities of demographic and adaptive processes in young male residents of Magadan oblast. The Bulletin of the North-East Scientific Center. 2015;(3):99–102. EDN: UIIADZ
- Belyayeva V. Heart rate variability and basic hemodynamic parameters in medical students in seasons with different photoperiod. Archiv EuroMedica. 2022;12(6). doi: 10.35630/2022/12/6.14 EDN: PYEUVS
- Datieva FS, Belyayeva VA, Dzampaeva ZhV, et al. Dysregulatory aspects in the pathogenesis of cardiovascular disorders. Possibilities of correction with phytoadaptogens: experimental and clinical studies. Vladikavkaz: IP Tsopanova AYu; 2022. 308 p. (In Russ.) EDN: NACWMX
- Belyaeva VA, Takoeva EA. Adaptation potential of the circulatory system and heart rate variability in medical students. Modern Problems of Science and Education. 2019;(6):124. doi: 10.17513/spno.29313 EDN: SIIMAM
补充文件
