太阳辐射成分对亚北极和亚热带地区近地空气层氧密度的影响
- 作者: Ragozin O.N.1, Muthelo L.2, Shalamova E.Y.1, Gudkov A.B.3, Pogonysheva I.A.4, Ragozinа E.R.1, Pogonyshev D.A.4
-
隶属关系:
- Khanty-Mansiysk State Medical Academy
- University of Limpopo
- Northern State Medical University
- Nizhnevartovsk State University
- 期: 卷 32, 编号 2 (2025)
- 页面: 80-89
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journals.rcsi.science/1728-0869/article/view/314572
- DOI: https://doi.org/10.17816/humeco678873
- EDN: https://elibrary.ru/QRUPRI
- ID: 314572
如何引用文章
全文:
详细
摘要
证。太阳辐射由电磁辐射和太阳风组成。在太阳耀斑期间,其表现出非线性特征,伴有电磁波辐射增强以及大量带电粒子的释放。太阳辐射强度的增加会改变地球的光热平衡和地磁活动,进而影响天气状况和氧气状态。
目的。根据太阳活动水平,评估太阳辐射不同成分对亚北极和亚热带地区氧密度动态变化的影响。
材料与方法。关于太阳黑子数的数据来自Royal Observatory of Belgium公开发布的资料。太阳辐射强度、行星磁指数(Ap)和局部地磁活动指数(K)的数据取自All-Russian Research Institute of Hydrometeorological Information。氧密度根据温度、大气压和相对湿度计算得出。比较了2007年(太阳活动低年)与2001年(太阳活动高年)的数据。数学分析采用小波分析法。
结果。在2001年北方地区,太阳辐射的平均值、振幅和自相关性与2007年无显著差异。而在亚热带地区,其平均值和振幅明显较高,自相关性降低,表明时间序列结构受到扰动。同步系数的数值显示,在太阳活动活跃年和太阳活动平静年,北方地区的太阳辐射与氧密度之间存在显著相关性,而在太阳活动较低的年份,亚热带地区则表现出较弱的同步性。在Polokwane,随着太阳活动水平从极低升高至中等,Ар指数与К指数的同步性增强;然而,Ар与氧密度、К与氧密度之间的同步系数显示,无论太阳活动水平如何,这些地磁指数与氧密度之间的相关性始终极弱。在Khanty-Mansiysk,Ар指数与К指数之间的同步性仍然较弱;随着太阳活动增强,Ар与氧密度之间的同步系数略有上升,而К与氧密度之间的同步性则从弱下降至极弱。
结论。在两个地理区域的太阳平静年,太阳辐射与氧密度的波动之间表现出显著的相关性。在亚热带地区,太阳活动增强时,太阳辐射与氧密度之间的相关性减弱。不论太阳活动水平或地理纬度如何,氧密度与行星磁活动和局部磁活动之间的统计学显著同步性均处于由弱至极弱的范围。
作者简介
Oleg N. Ragozin
Khanty-Mansiysk State Medical Academy
Email: oragozin@mail.ru
ORCID iD: 0000-0002-5318-9623
SPIN 代码: 7132-3844
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Khanty-MansiyskLivhuwani Muthelo
University of Limpopo
Email: livhuwani.muthelo@ul.ac.za
Researcher ID: AHC-1001-2022
PhD, Senior Lecturer
南非, PolokwaneElena Yu. Shalamova
Khanty-Mansiysk State Medical Academy
Email: selenzik@mail.ru
ORCID iD: 0000-0001-5201-4496
SPIN 代码: 8125-9359
Dr. Sci. (Biology), Associate Professor
俄罗斯联邦, Khanty-MansiyskAndrej B. Gudkov
Northern State Medical University
Email: gudkovab@nsmu.ru
ORCID iD: 0000-0001-5923-0941
SPIN 代码: 4369-3372
MD, Dr.Sci. (Medicine), Professor
俄罗斯联邦, ArkhangelskIrina A. Pogonysheva
Nizhnevartovsk State University
编辑信件的主要联系方式.
Email: severina.i@bk.ru
ORCID iD: 0000-0002-5759-0270
SPIN 代码: 6095-8392
Cand. Sci. (Biology), Associate Professor
俄罗斯联邦, NizhnevartovskElina R. Ragozinа
Khanty-Mansiysk State Medical Academy
Email: elinka1000@yandex.ru
ORCID iD: 0000-0003-0199-2948
SPIN 代码: 7335-7635
俄罗斯联邦, Khanty-Mansiysk
Denis A. Pogonyshev
Nizhnevartovsk State University
Email: d.pogonyshev@mail.ru
ORCID iD: 0000-0001-8815-1556
SPIN 代码: 1179-9674
Cand. Sci. (Biology), Associate Professor
俄罗斯联邦, Nizhnevartovsk参考
- Fedorov VM, Sokratov SA, Frolov DM. The tendencies of change of the incoming solar radiation to the upper atmosphere boundary and their spatial localization. Issledovanie Zemli iz Kosmosa. 2019;(5):50–58. doi: 10.31857/S0205-96142019550-58 EDN: NFQKZC
- Russell CT. The solar wind and magnetospheric dynamics. In: Page DE, editor. Correlated Interplanetary and Magnetospheric Observations. Astrophysics and Space Science Library. Springer, Dordrecht; 1974;42. doi: 10.1007/978-94-010-2172-2_1
- Veselovsky IS, Kaportseva KB, Lukashenko AT. Hydrodynamic classification of solar wind flows. Astronomicheskii vestnik. Issledovaniya Solnechnoi Sistemy. 2019;53(1):61–73. doi: 10.1134/S0320930X19010080 EDN: YWYHGH
- Vladimirsky BM, Temuryants NA, Martynyuk VS. Space weather and our life. Moscow: DMK-Press; 2022. 224 p. ISBN: 978-5-89818-203-8
- Datieva FS, Volkov AV, editors. Heliogeophysical factors in chronopathophysiology and clinical medicine. Vladikavkaz; Tula: IBMI VSC RAS; 2023. 490 p. ISBN: 978-5-00081-596-0
- Berlyand TG. Distribution of solar radiation on the continents. Leningrad: Gidrometeoizdat; 1961. 227 p.
- Fedorov VM, Frolov DM. Spatial and temporal variability of solar radiation arriving at the top of the atmosphere. Kosmicheskie Issledovaniya. 2019;57(3):177–184. doi: 10.1134/S002342061903004X
- Ragozin ON, Tatarintsev PB, Pogonysheva IA, et al. Corrections for geographical differences in photoperiod in time-series analysis. Ekologiya cheloveka (Human Ecology). 2023;30(2):139–149. doi: 10.17816/humeco117532 EDN: VVYOJA
- Bokeria LA, Bokeria OL, Volkovskaya IV. Cardiac rhythm variability: methods of measurement, interpretation, clinical use. Annals of Arrhythmology. 2009;6(4):21–32. EDN: KYGRHZ
- Azcaratea T, Mendoza B, Levi JR. Influence of geomagnetic activity and atmospheric pressure on human arterial pressure during the solar cycle 24. Adv Space Res. 2016;58(10):2116–2125. doi: 10.1016/j.asr.2016.05.048
- Cornelissen G, Halberg F, Sothern RB, et al. Blood pressure, heart rate and melatonin cycles synchronization with the season, earth magnetism and solar flares. Scr Med (Brno). 2010;83(1):16–32.
- Persinger MA, McKay BE, O'Donovan CA, et al. Sudden death in epileptic rats exposed to nocturnal magnetic fields that simulate the shape and the intensity of sudden changes in geomagnetic activity: an experiment in response to Schnabel, Beblo and May. Int J Biometeorol. 2005;49(4):256–261. doi: 10.1007/s00484-004-0234-2
- Kowalski U, Wiltschko R, Fuller E. Normal fluctuations of the geomagnetic field may affect initial orientation in pigeons. J Comp Physiol. 1988;163:593–600. doi: 10.1007/bf00603843
- Rapoport SI, Malinovskaya NK, Vetterberg L, et al. Melatonin production in patients with hypertension during magnetic storms. Therapeutic Archive. 2001;73(12):29–33. (In Russ).
- Welker HA, Semm P, Willig RP, Commentz JC, Wiltschko W, Vollrath L. Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Exp Brain Res. 1983;50(2-3):426–432. doi: 10.1007/BF00239209
- Krylov VV. Biological effects of geomagnetic activity: observations, experiments and possible mechanisms. Transactions of Papanin Institute for Biology of Inland Waters RAS. 2018;(84):7–38. doi: 10.24411/0320-3557-2018-10016 EDN: VPYJDM
- Vasilyeva NI. The problem of correlation of human biorhythms and solar activity in light of the concept of the “universal spectrum” of the solar system. Izvestiya TRTU. 2000;(4):36–37. (In Russ.) EDN: KUSMIB
- Shemy-Zade AE. Transformation of the impulse of solar-geomagnetic activity into disturbances of the radon and aeroion fields of the planet. Biophysics. 1992;37(4):690–699. (In Russ.)
- Lednev VV. Biological effects of extremely weak variable magnetic fields: identification of primary targets. In: Modeling of geophysical processes. Moscow: IPE RAS; 2003. P. 130–136. (In Russ.) EDN: ZTTRXB
- Chibisov SM. Cosmos and biosphere: the influence of magnetic storms on the chronostructure of biological rhythms. RUDN Journal oF Medicine. 2006;(3):35–44. EDN: IJNGFD
- Borisenkov MF. Influence of the earth's magnetic field on the daily dynamics of the total antioxidant activity of human saliva in the North. Advances in Gerontology. 2007;20(4):56–60. EDN: IUDXEL
补充文件
