评估振动病患者的细胞因子、神经递质受体抗体及其相互关系
- 作者: Masnavieva L.B.1, Bodienkova G.M.1, Boklazhenko E.V.1
-
隶属关系:
- East-Siberian Institute of Medical and Ecological Research
- 期: 卷 31, 编号 7 (2024)
- 页面: 512-520
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journals.rcsi.science/1728-0869/article/view/314525
- DOI: https://doi.org/10.17816/humeco643122
- ID: 314525
如何引用文章
详细
背景。维护劳动人口的健康是俄罗斯联邦医疗卫生体系的优先任务之一,因为职业病患者的治疗和社会补助导致的经济损失超过 2000 亿卢布。在职业病谱系中,振动病及其并发的神经性听力损失仍占据主要地位。研究表明,这些患者的神经-免疫-内分泌系统功能受到显著损害。
研究目的。评估振动病患者的细胞因子水平及其针对神经递质受体的自身抗体水平,分析其相互关系,并探讨这些指标在不同振动暴露类型及伴或不伴神经性听力损失情况下的特点。
材料与方法。 研究纳入因局部振动或局部与全身振动联合暴露所致的振动病患者,分为伴或不伴神经性听力损失的亚组。采用酶联免疫吸附分析(ELISA)测定血清中细胞因子水平,包括白细胞介素(IL-1β、IL-4、IL-6、IL-8)、肿瘤坏死因子 α(TNF-α),以及针对乙酰胆碱、谷氨酸、γ-氨基丁酸(GABA)、多巴胺和血清素受体的自身抗体水平。
结果。研究发现,伴有神经性听力损失的振动病患者 IL-1β 和 IL-6 水平显著高于仅由局部振动引起但未发生听力损害的患者。此外,除局部与全身振动联合暴露但未合并听力损失的亚组外,其余各组均建立了回归方程,表明细胞因子水平与神经递质受体抗体之间的显著相关性。
结论。 研究结果证实,与单纯局部振动所致的振动病相比,局部与全身振动联合暴露可显著增加神经免疫炎症的发生风险。此外,伴发神经性听力损失的患者病理进程更为严重,这可能与细胞因子失衡及神经递质系统功能障碍相关。本研究揭示了不同病因所致振动病及其伴发神经性听力损失患者的自身抗体-神经递质受体与细胞因子的相互作用特征。
作者简介
Liudmila B. Masnavieva
East-Siberian Institute of Medical and Ecological Research
Email: Masnavieva_Luda@mail.ru
ORCID iD: 0000-0002-1400-6345
SPIN 代码: 3794-7520
Dr. Sci. (Biology)
俄罗斯联邦, AngarskGalina M. Bodienkova
East-Siberian Institute of Medical and Ecological Research
编辑信件的主要联系方式.
Email: immun11@yandex.ru
ORCID iD: 0000-0003-0428-3063
SPIN 代码: 7751-8515
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, AngarskElena V. Boklazhenko
East-Siberian Institute of Medical and Ecological Research
Email: immun11@yandex.ru
ORCID iD: 0000-0002-2025-8303
SPIN 代码: 9326-7806
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Angarsk参考
- Khrupachev AG, Khadartsev AA, Sedova OA, et al. Quantitative assessment of the harmful effects of industrial noise and vibration on human health. National Interests: Priorities and Security. 2013;9(28):44–52. (In Russ.) EDN: QIYXLR
- Babanov SA, Vorobyova EV. Features of diagnosis and course of vibration disease in the conditions of modern production. Trudnyj Pacient (Difficult Patient). 2010;8(5):28–30. (In Russ.) EDN: OGBNTL
- Bodienkova GM, Boklazhenko EV. Immunochemical markers of effect under exposure to risk factors causing vibration disease of different etiogenesis: comparative assessment. Health Risk Analysis. 2023;(2):149–154. doi: 10.21668/health.risk/2023.2.14 EDN: IMBTYX
- Lapko IV, Kir'yakov VA, Pavlovskaya NA, Zheglova AV. Changes in hormones of pituitary-thyroid and pituitary-genital systems in workers with vibration disease and neurosensory deafness. Russian Journal of Occupational Health and Industrial Ecology. 2015;(10):26–30. EDN: UMUIQD
- Miteva D, Vasilev GV, Velikova T. Role of specific autoantibodies in neurodegenerative diseases: pathogenic antibodies or promising biomarkers for diagnosis. Antibodies (Basel). 2023;12(4):81. doi: 10.3390/antib12040081
- Kirschstein T, Köhling R. Functional changes in neuronal circuits due to antibody-driven autoimmune response. Neurobiol Dis. 2023;184:106221. doi: 10.1016/j.nbd.2023.106221
- Bodienkova GM, Boklazhenko EV. Comparative assessment of neurochemical indicators in patients with occupational pathology due to physical and chemical factors. Neirokhimiya. 2021;38(4):385–390. doi: 10.31857/S1027813321040026 EDN: KDXRLT
- Poletaev AB Molecular medical examination (new approaches to the early manifestation of pathological changes in the human body: guidelines for doctors. Moscow: Immunculus; 2014. (In Russ.)
- Kashtalyan OA, Ushakova LYu. Cytokines as universal regulation system. Meditsinskie Novosti. 2017;(9):3–7. EDN: ZHRKTB
- Berezhnaya NM, Sepiashvili RI. Interleukins in the pathogenesis of atopic allergic diseases. Allergology and Immunology. 2014;15(3):169–176. (In Russ.) EDN: UCKODP
- Ketlinskiy SA, Simbirtsev AS. Cytokines. St. Petersburg: Foliant; 2008. (In Russ.)
- Rukavishnikov VS, Bodienkova GM, Kurchevenko SI, et al. Role of neuroautoimmune integration in pathogenesis of vibration disease. Russian Journal of Occupational Health and Industrial Ecology. 2017;(1):17–20. EDN: XYEXFZ
- Bodienkova GM, Kurchevenko SI. Influence of industrial vibration on the level of antibodies against regulatory proteins of the nervous tissue. Fiziologiya Cheloveka. 2016;42(5):550–553. doi: 10.7868/S0131164616050039 EDN: WLNKEJ
- Maragakis NJ, Rothstein JD. Glutamate transporters in neurologic disease. Arch Neurol. 2001;58(3):365–370 doi: 10.1001/archneur.58.3.365
- Mironova YuS, Zhukova NG, Zhukova IA, et al. Parkinson's disease and glutamatergic system. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(5):138–142. doi: 10.17116/jnevro201811851138 EDN: XROHLV
- Kuzmina USh, Zainullina LF, Vakhitov VA, et al. The role of glutamate in the pathogenesis of multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(8):160–167. doi: 10.17116/jnevro2019119081160 EDN: LMTRSO
- Kolobov VV, Zakharova IA, Fomina VG, et al. Effect of antibodies to glutamate on caspase-3 activity in brain structures of rats with experimental Alzheimer’s disease. Bulletin of Experimental Biology and Medicine. 2013;154(4):425–427 doi: 10.1007/s10517-013-1967-x EDN: RFJFTJ
补充文件
