Оппортунистические грибы - контаминанты среды обитания человека и их потенциальная патогенность

Обложка

Цитировать

Полный текст

Аннотация

Массовое распространение оппортунистических грибов в среде обитания человека, в том числе за счет развития процессов биоповреждений различных материалов, представляет глобальную экологическую проблему. В настоящее время во всем мире активно проводятся исследования по оценке контаминации грибами среды обитания человека, формирования специфических, отличных от природных, антропогенных микоценозов, негативно влияющих на его здоровье. Значительное число видов этих грибов являются аллергенными, токсигенными, относятся к возбудителям многих опасных заболеваний (инвазивный аспергиллез, аллергический бронхолегочный аспергиллез, бронхиальная астма, мукороз и др.). Количество микозов, вызываемых оппортунистическими грибами, ежегодно увеличивается во всем мире. О потенциальной патогенности этих грибов свидетельствует и тот факт, что условно патогенные грибы имеют практически такие же факторы патогенности, как и патогенные. Обладая уникальной способностью адаптироваться к изменяющимся условиям среды, они могут противостоять как защитным механизмам человека, так и действию различных антифунгальных средств. Эти свойства грибов обуславливают трудность борьбы с ними, которая не всегда завершается успешно. В настоящем обзоре представлены данные собственных исследований авторов и результаты других отечественных и зарубежных исследователей о распространении сапробных грибов в среде обитания человека, дана краткая характеристика факторов их патогенности. Обсуждается необходимость создания эффективных и экологически безопасных средств защиты от оппортунистических грибов, включая комплексные препараты

Об авторах

Ирина Леонидовна Кузикова

ФГБУН «Санкт-Петербургский Федеральный исследовательский центр Российской академии наук»; Санкт-Петербургский научно-исследовательский центр экологической безопасности Российской академии наук

Email: ilkuzikova@ya.ru
кандидат биологических наук, ведущий научный сотрудник лаборатории биологических методов экологической безопасности г. Санкт-Петербург

Надежда Григорьевн Медведева

ФГБУН «Санкт-Петербургский Федеральный исследовательский центр Российской академии наук»; Санкт-Петербургский научно-исследовательский центр экологической безопасности Российской академии наук

г. Санкт-Петербург

Список литературы

  1. Андрюков Б. Г., Сомова Л. М., Тимченко Н. Ф. Эволюция понятия сапронозы и трансформация экологической концепции паразитизма в инфектологии // Журнал микробиологии, эпидемиологии и иммунобиологии. 2017. № 5 С. 119-126
  2. Антонов В. Б. Влияние биоповреждений на здоровье человека // Материалы международной конференции «Проблемы долговечности зданий и сооружений». Санкт-Петербург. 2007. С. 137-142
  3. Антонов В. Б. Антропогенно-очаговые болезни жителей большого города // Журнал инфектологии. 2009. Т. 1, № 2/3, С. 7-12
  4. Ахапкина И. Г., Глушакова А. М., Антропова А. Б., Качалкин А. В., Биланенко Е. Н., Желтикова Т. М. Микробиота пыли жилых помещений разного назначения: перспектива оценки аллергенной и пирогенной нагрузок помещений // Гигиена и санитария. 2019. № 4. С. 380-387
  5. Богомолова Е. В., Миненко Е. А., Кирцидели И. Ю. Потенциальная вирулентность микромицетов, изолированных из музейных помещений // Микология и фитопатология. 2007. Т. 41, №.2. С. 113-118
  6. Васильева Н. В., Елинов Н. П. Микроорганизмы -контаминанты и патогены - индукторы процессов старения больничных зданий и помещений медицинского назначения, а также возбудители некоторых заболеваний людей. Санкт-Петербург: КОСТА, 2009. 224 с
  7. Кузикова И. Л., Тилева Е. А., Трошева Т. Д., Медведева Н. Г. Потенциальная патогенность микромицетов-контаминантов библиотечных фондов // Микология и фитопатология. 2012. Т. 46, № 5. С. 329-333
  8. Лисовская С. А., Глушко Н. И., Халдеева Е. В., Фассахов Р. С., Файзуллина Е. В., Зинатуллина Г. М. Влияние экстрактов мицелиальных грибов на адгезивные свойства Candida albicans // Проблемы медицинской микологии. 2010. Т. 12, № 1. С. 34-37
  9. Литвин В. Ю., Сомов Г. П., Пушкарева В. И. Сапронозы как природно-очаговые болезни // Эпидемиология и вакцинопрофилактика. 2010. Т. 50, № 1. С. 10-16
  10. Марфенина О. Е., Кулько А. Б., Иванова А. Е. Микроскопические грибы во внешней среде города // Микология и фитопатология. 2002. Т. 36, №. 4. С. 22-31
  11. Панин А. Л., Сбойчаков В. Б., Белов А. Б., Краева Л. А., Власов Д. Ю., Гончаров А. Е. Природно-техногенная очаговость инфекционных болезней на территории антарктических поселений // Успехи современной биологии. 2016. Т. 136, № 1. С. 53-67
  12. Сомов Г. П., Литвин В. Ю. Сапрофитизм и паразитизм патогенных бактерий. Экологические аспекты. Новосибирск: Наука, 1988. 205 с
  13. Сухаревич В. И., Кузикова И. Л., Медведева Н. Г.Защита от биоповреждений, вызываемых грибами. СПб.: Элби, 2009, 206 с.
  14. Феофилова Е. П., Алехин А. И., Гончаров Н. Г., Мысякина И. С., Сергеева Я. Фундаментальные основы микологии и создание лекарственных препаратов из мицелиальных грибов. М.: Национальная академия микологии, 2013. 152 с
  15. Adams R. I., Mendell M. J. Measuring building moisture to thwart mold growth. ASHRAE Journal. 2019, 61 (2), pp. 58-60.
  16. Aleksic B., Bailly S., Draghi M., Pestka J. J., Oswald I. P, Robine E., Bailly J. D., Lacroix M. Z. Production of four macrocyclic trichothecenes by Stachybotrys chartarum during its development on different building materials as measured by UPLC-MS/MS. Building and Environment. 2016, 106, pp. 265-273.
  17. Albrecht A., Felk A., Pichova I., Naglik J. R., Schaller M., de Groot P., Maccallum D., Odds F. C., Schafer W, Klis F., et al. Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J. Biol. Chem. 2006, 281 (2), pp. 688-694.
  18. Aril S., Samaranayake L. P Brief exposure to antimycotics reduces the extracellular phospholipase activity of Candida albicans and Candida tropicalis. Chemotherapy. 2003, 49, pp. 243-247.
  19. Aringoli E. E., Basilico M. L., Altahus R. L., Basilico J. C. Multivariate analysis of fungal association in the indoor air of Argentinean houses. International Biodeterioration and Biodegradation. 2008, 62, pp. 281-286.
  20. Barman A., Gohain D., Bora U., Tamuli R. Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiological Research. 2018, 209, pp. 55-69.
  21. Bartos M., Falkinham J. O., Pavlik J. Mycobacterial catalases, peroxidases and superoxide dismutases and their effects on virulence and isoniazid- susceptibility in mycobacteria. A review. Veterinari Medicina. 2004, 49 (5), pp. 161-170.
  22. Belachew H., Assefa Y., Guyasa G. et al. Sick building syndrome and associated risk factors among the population of Gondar town, northwest Ethiopia. Environ Health Prev Med. 2018, 23 (54), pp. 1-9.
  23. Bennett J. W., Inamdar A. A. Are some fungal volatile organic compounds (VOCs) mycotoxins. Toxins. 2015, 7, pp. 3785-3804.
  24. Birch M., Robson G., Law D., Denning D. Evidence of myltiple extracellular phospholipase activities of Aspergillus fumigates. Infection and Immunity. 1996, 64 (3), pp. 751755.
  25. Birinci A., Bilgin K., Tanriverdi C. Y. Investigation of acid proteinase and phospholipase activity as virulence factors in clinical Aspergillus spp. isolates. Mikrobiyoloji Bulteni. 2014, 48 (3), pp. 491-494.
  26. Butler M. I., Day A. W, Henson J. M. Pathogenic properties of fungal melanins. Mycologia. 2001, 93 (1), pp. 1-8.
  27. Castillo N. I., Ibanez M., Beltran E., Rivera-Monroy J., Ochoa J. C., Paez-Castillo M., Posada-Buitrago M. L., Sulyok M., Hernandez F. Identification of mycotoxins by UHPLC-QTOF MS in airborne fungi and fungi isolated from industrial paper and antique documents from the Archive of Bogota. Environmental Research. 2016, 144 (A), pp. 130-138.
  28. Chromy B. A., Choi M. W., Murphy G. A., Gonzales A. D. et al. Proteomic characterization of Yersinia pestis virulence. J. of Bacteriology. 2005, 187 (23), pp. 8172-8180.
  29. Correa Pinto A. M., Palomar T., Alves L. C., da Silva S. H. M., Monteiro R. C., Macedo M. F., Vilarigues M. G. Fungal biodeterioration of stained-glass windows in monuments from Belem do Para (Brazil). International Biodeterioration and Biodegradation. 2019, 138, pp. 106-113.
  30. Cox G. M., McDade H. C., Chen S. C. A., Tucker S. C. et al. Extracellular phospholipases activity is a virulence factor for Cryptococcus neoformans. Molecular Microbiology. 2001, 39 (1), pp. 166-175.
  31. Dagenais T. R., Keller N. P Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. dinical microbiology reviews. 2009, 22 (3), pp. 447-465.
  32. De Bernardis F., Sullivan P. A., Cassone A. Aspartyl proteinases of Candida albicans and their role in pathogenicity. Medical Mycology. 2001, 39 (4), pp. 303-313.
  33. De Oliveira H. C., Trevijano-Contador N., Garcia-Rodas R. Cryptococcal pathogenicity and morphogenesis. Current Fungal Infection Reports. 2019, 13, pp. 67-76.
  34. Doering T. L., Nosanchuk J. D., Roberts W. K., and Casadevall A. Melanin as a potential cryptococcal defence against microbicidal proteins. Med. Mycol. 1999, 37, pp. 175-181.
  35. Djordjevic J. T. Role of phospholipases in fungal fitness, pathogenicity and drug development - lessons from Cryptococcus neoformans. Microbiology. 2010, 1(125), pp. 1-13.
  36. Dyda M., Decewicz P., Romaniuk K.,Wojcieszak M., Sklodowska A., Dziewit L., Drewniak L., Laudy A. Application of metagenomic methods for selection of an optimal growth medium for bacterial diversity analysis of microbiocenoses on historical stone surfaces. International Biodeterioration and Biodegradation. 2018, 131, pp. 2-10.
  37. Eisenman H. C., Casadevall A. Synthesis and assembly of fungal melanin (Review). Applied Microbiology and Biotechnology. 2012, 93 (3), pp. 931-940.
  38. Esbelin J., Mallea S., Ram A. F. J., Carlin F. Role of pigmentation in protecting Aspergillus niger conidiospores against pulsed light radiation. Photochemistry and Photobiology. 2013, 89 (3), pp. 758-761.
  39. Flannigan B., Miller J. D. Microbial growth in indoor environments (Book Chapter). Microorganisms in home and indoor work environments: Diversity, health impacts, investigation and control: Second edition. CRC Press. Edited by B. Flannigan, R. A. Samson, J. D. Miller. 2017, pp. 57-144.
  40. Furukawa T., van Rhijn N., Fraczek M. et al. The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigates. Nat Commun. 2020, 11 (1), p. 427.
  41. Ganendren R., Widmer F., Singhal V, Wilson C., Sorrell T., Wright L. In Vitro antifungal activities of inhibitors of phospholipases from the fungal pathogen Cryptococcus neoformans. Antimicrob. Agents. Chemother. 2004, 48, pp. 1561-1569.
  42. Gessler N. N., Egorova A. S., Belozerskaya T. A. Melanin pigments of fungi under extreme environmental conditions (Review). Applied Biochemistry and Microbiology. 2014, 50, pp. 105-113.
  43. Ghannoum M. A. Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 2000, 13, pp. 122-143.
  44. Gifford A. H., Klippenstein J. R., Moore M. M. Serum stimulates growth of and proteinase secretion by Aspergillus fumigatus. Infect. Immun. 2002, pp. 19-26.
  45. Gravelat F. N., Beauvais A., Liu H., Lee M. J., Snarr B. D., Chen D., Xu W, Kravtsov I., Hoareau C. M., Vanier G., Urb M., Campoli P., Al Abdallah Q., Lehoux M., Chabot J. C., et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal ß-glucan from the immune system. PLoS Pathog. 2013, 9 (8), р. e1003575.
  46. Gray M. R., Thrasher G. D., Crago R., Madison R. A., Arnold L et al. Mixed mold mycotoxicosis: immunological changes in humans following exposure in water-damaged building. Archives of Environmental Health: An International Journal. 2003, 58 (7), pp. 410-420.
  47. Hamilton A. J., Holdom M. D. Antioxidant systems in the pathogenic fungi of man and their role in virulence. Med. Mycol. 1999, 37, pp. 375-389.
  48. Hendry K. M., Cole E. C. A review of mycotoxins in indoor air. J. Toxicology and Environmental Health. 1993, 38 (2), pp. 183-198.
  49. Hope. J. A review of the mechanism of injury and treatment approaches for illness resulting from exposure to water-damaged buildings, mold, and mycotoxins. Sci. World J. 2013, 2013, p. 20.
  50. Jahn B., Boukhallouk F., Lotz J., Langfelder K. et al. Interaction of human phagocytes with pigmentless Aspergillus conidia. Infection and Immunity. 2000, 68 (6), pp. 3736-3739.
  51. Kothary M. H., Chase J., Macmillan J. D. Correlation of elastase production by some strains of Aspergillus fumigatus with ability to cause pulmonary invasive aspergillosis in mice. Infect. Immun. 1984, 43, pp. 320-325.
  52. Kozel T. R., Cuerlain A. S., Highison B. A., Highison G. J. Role of the capsule in phagocytosis of Cryptococcus neoformans. Rev. Infect. Dis. 1988, 10, pp. 8436-8439.
  53. Kumari B., Kaur Jas., Kaur Jag. Phospholipases in bacterial virulence and pathogenesis. Adv Biotech and Micro. 2018, 10 (5), pp. 106-113.
  54. Langfelder K., Streibel M., Jahn B. et al. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal genetics and Biology. 2003, 38, pp. 143-158.
  55. Latge J. P., Beauvais A., Chamilos G. The cell wall of the human fungal pathogen Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu Rev Microbiol. 2017, 71, pp. 99-116.
  56. Lee K. S., Patton J. L., Fido M., Hines L. K., Kohlwein S. D., Paltauf F., Henry S. A., Levin D. E. The Saccharomyces cerevisiae PLB1 gene encodes a protein required for lysophospholipase and phospholipase B activity. J. Biol. Chem. 1994, 269, pp. 19725-19730.
  57. Lee M. J., Liu H., Barker B. M., Snarr B. D., Gravelat F. N., Al Abdallah Q., Gavino C., Baistrocchi S. R., Ostapska H., Xiao T., Ralph B., Solis N. V, Lehoux M., Baptista S. D., Thammahong A., et al. The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog. 2015, 11, pp. 1-22.
  58. Ljaljevic-Grbic M., Stupar M., Vukojevic J., Maricic I., Bungur N. Molds in museum environments: Biodeterioration of art photographs and wooden sculptures. Archives of Biological Sciences. 2013, 65 (3), pp. 955-962.
  59. Medina A., Akbar A., Baazeem A., Rodriguez A., Magan N. Review. Climate change, food security and mycotoxins: Do we know enough. Fungal Biology Reviews. 2017, 31 (3), pp. 143-154.
  60. Menzies D., Holmes L., McCumesky G., Prys-Picard C., Niven R. Aspergillus sensitization is associated with airflow limitation and bronchiectasis in severe asthma: aspergillus, bronchiectasis and severe asthma. Allergy. 2011, 66 (5), pp. 679-685.
  61. Merkel O., Fido M., Mayr J. A., Pruger H., Raab F., Zandonella G., Kohlwein S. D., Paltauf F. Characterization and function in vivo of two novel phospholipases B/ lysophospholipases from Saccharomyces cerevisiae. J. Biol. Chem. 1999, 274, pp. 28121-28127.
  62. Miller J. D., McMullin D. R. Fungal secondary metabolites as harmful indoor air contaminants: 10 years on. Appl Microbiol Biotechnol. 2014, 98, pp. 9953-9966.
  63. Ming Ye., Geng-Yi G., Ying L., Sheng S. et al. Purification, structure and antiradiation activity melanin from Lachnum YM 404. International journal of biological macromoleculs. 2014, 63, pp. 170-176.
  64. Monod M., Borg-von Zepelin M., Telenti A., Sanglard D. The inhibition of Candida albicans - secreted aspartic proteases by three different HIV protease inhibitors. Dermatology. 1999, 198, pp. 412-414.
  65. Monod M., Capoccia S., Lechenne B., Zaugg C., Holdom M., Jousson O. Secreted proteases from pathogenic fungi. Int J Med Microbiol. 2002, 292 (5-6), pp. 405-419.
  66. Monod M., Fatih A., Jaton-Ogay K. Paris S., Latge J. P. The secreted proteases of pathogenic species of Aspergillus and their possible role in virulence. Can. J. Bot. 1995, 73, pp. 1081-1086.
  67. Naglik G. R., Albrecht A., Bader O., Hube B. Candida albicans proteinases and host / pathogen interactions. Сell Microbiol. 2004, 6, pp. 915-926.
  68. Naglik G. R., Hube B. Secreted Candida proteins: Pathogenicity and host immunity. R. Ashbee and E. M. Bignell (eds.), Pathogenic yeasts, the yeast handbook, Springer-Verlag Berlin Heidelberg. 2009, pp. 97-120.
  69. Nguyen H. N., Chaves-Lopez C., Oliveira R. C., Paparella A., Rodrigues D. F. Cellular and metabolic approaches to investigate the effects of graphene and graphene oxide in the fungi Aspergillus flavus and Aspergillus niger. Carbon. 2019, 143, pp. 419-429.
  70. Nosanchuk J. D., Ovalle R., Casadevall A. Glyphosate inhibits melanization of Cryptococcus neoformans and prolongs survival of mice after systemic infection. J. Infect. Dis. 2001, 18, pp. 1093-1099.
  71. Nosanchuk J. D., Valadon P., Feldmesser M., Casadevall A. Melanization of Cryptococcus neoformans in murine infection. Mol. Cell. Biol. 1999, 19, pp. 745-750.
  72. Nosanchuk J. D., Casadevall A. Budding of melanized Cryptococcus neoformans in the presence or absence of L-dopa. Microbiology. 2003, 149, pp. 1945-1951.
  73. Nosanchuk J. D., Stark R. E., Casadevall A. Fungal melanin: what do we know about structure. Front. Microbiol. 2015, 6, p. 1463.
  74. Pal A. K., Gajjar D. U., Vasavada A. R. DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Medical mycology: official publication of the international society for human and animal mycology. 2013, 52 (1), pp. 1-9.
  75. Paris S., Wysong D., Debeaupuis J-P., Shibuya K. et al. Catalases of Aspergillus fumigatus. Infection and Immunity. 2003, 71 (6), pp. 3551-3562.
  76. Perfect G. R. Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Research. 2006, 6 (4), pp. 463-468.
  77. Philippe B., Ibrahim-Granet O., Provost M.C. et al. Killing of Aspergillus fumigatus by the alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun. 2003, 71, pp. 3034-3042.
  78. Polak A. Melanin as a virulence factor in pathogenic fungi. Mycoses. 1990, 33 (5), pp. 215-224.
  79. Rapala-Kozik M., Bochenska O., Zajac D., Karkowska-Kuleta J., Gogol M., Zawrotniak M., Kozik A. Extracellular proteinases of Candida species pathogenic yeasts. Mol Oral Microbiol. 2018, 33 (2), pp. 113-124.
  80. Reboux G., Bellanger A. P., Roussel S., Grenouillet F., Millon L. Moulds in dwellings: health risks and involved species. Rev Fr D Allergol. 2010, 50, pp. 611-620.
  81. Rementeria A., Lopez-Molina N., Ludwig A., Vivanco A. B., et al. Genes and molecules involved in Aspergillus fumigatus virulence. Revista Iberoamericana de Micologia. 2005, 22 (1), pp. 1-23.
  82. Rossoni R. D., Barbosa J. O., Vilela S. F. G., dos Santos J. D., Jorge A. O. C., Junqueira J. C. Correlation of phospholipase and proteinase production of Candida with in vivo pathogenicity in Galleria mellonella. Braz J Oral Sci. 2013, 12 (3), pp. 199-204.
  83. Sabino R., Burco J., Valente J., Verissimo C., Clemons K. V., Stevens D. A., Tell L. A. Molecular identification of clinical and environmental avian Aspergillus isolates. Arch Microbiol. 2019, 201 (2), pp. 253-257.
  84. Schaller M., Borelli C., Korting H. C., Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005, 48 (6), pp. 365-377.
  85. Schouten A., Tenberge K. B., Vermeer J., Stewart J. et al. Functional analysis of an extracellular catalase of Botrytis cinerea. Molecular plant pathology. 2002, 3 (4), pp. 227-238.
  86. Segers F. J. J., Meijer M., Houbraken J., Samson R. A., Wosten H. A. B., Dijksterhuis J. Xerotolerant Cladosporium sphaerospermum are predominant on indoor surfaces compared to other Cladosporium species. PLoS ONE. 2015, 10 (12), pp. 1-15.
  87. Shibuya K., Paris S., Ando T., Nakayama H., Hatori T., Latge J. P Catalases of Aspergillus fumigatus and inflammation in aspergillosis. Nihon Ishinkin Gakkai Zasshi. 2006, 47, pp. 249-255.
  88. Shen D. K., Noodeh A. D., Kazemi A., Grillot R., Robson G., Brugere J. F. Characterisation and expression of phospholipases B from the opportunistic fungus Aspergillus fumigates. FEMS microbiology letters. 2004, 239 (1 ), pp. 87-93.
  89. Sheppard D. C., Rieg G., Chiang L. Y., Filler S. G., Edwards J. E., Ibrahim A. S. Novel inhalational murine model of invasive pulmonary aspergillosis. Antimicrob. Agents Chemother. 2004, 48, pp. 1908-191 1.
  90. Sheppard D. C., Howell P. L. Biofilm exopolysaccharides of pathogenic fungi: lessons from bacteria. J. Biol. Chem. 2016, 291 (24), pp. 12529-12537.
  91. Siafakas A. R., Sorrell T. C., Wright L. C., Wilson C., Larsen M., Boadle R., Williamson P. R., and Djordjevic J. T. Cell wall-linked cryptococcal phospholipase B1 is a source of secreted enzyme and a determinant of cell wall integrity. J. Biol. Chem. 2007, 282, pp. 37508-37514.
  92. Svajlenka J., Kozlovska M., Posivakova T. Assessment and biomonitoring indoor environment of buildings. International Journal of Environmental Health Research. 2017, 27 (5), pp. 427-439.
  93. Theiss S., Ishdorj G., Brenot A., Kretschmar M., Lan C. Y. et al. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. Int. J. Med. Microbiol. 2006, 296, pp. 405-420.
  94. Van Duin D., Casadevall A., Nosanchuk J. D. Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibility to amphotericin B and caspofungin. Antimicrob. Agents Chemother. 2002, 46, pp. 3394-3400.
  95. Vieira de Melo A. P., Zuza-Alves D. L., da Silva-Rocha W. P., Ferreira Canario de Souza L. B., Francisco E. C., Salles de Azevedo Melo A., Maranhao Chaves G. Virulence factors of Candida spp. obtained from blood cultures of patients with candidemia attended at tertiary hospitals in Northeast Brazil. Journal de Mycologie Medicale. 2019, 29, pp. 32-139.
  96. Viswanathan K., Kumaresan V., Sannasimuthu A., Paray B. A., Al-Sadoon M. K., Arockiaraj J. Resolving the pathogenicity factors of a novel opportunistic fungus Schizophyllum commune at molecular level. Molecular Biology Reports. 2019, 46, pp. 3877-3886.
  97. WHO. Indoor air quality: biological contaminants. Report on a WHO meeting. Copenhagen: WHO Regional publications. 1990, 31, pp. 1-67.
  98. Woolnough K., Fairs A., Pashley C. H., Wardlaw A. J. Allergic fungal airway disease: Pathophysiologic and diagnostic considerations (Review). Current Opinion in Pulmonary Medicine. 2015, 21 (1), рр. 39-47.
  99. Xu X. Q., Pan S. O. An Agrobacterium catalase is a virulence factor involved in tumorigenesis. Molecular Microbiology. 2000, 35 (2), pp. 407-414.
  100. Yang Y. L. Virulence factors of Candida species. Microbiol. Immunol. Infect. 2003, 36, pp. 223-228.

© Кузикова И.Л., Медведева Н.Г., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах