Atmospheric pollution in Cherepovets according to remote sensing

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Satellite monitoring of air pollutant levels is currently widely used alongside conventional methods for assessing atmospheric pollution. Satellite technologies provide information on atmospheric pollutant levels for various geographic coordinate ranges; however, their applicability, notably for assessing air quality in residential areas, is disputed.

AIM: The work aimed to assess atmospheric pollution in Cherepovets by comparing Sentinel-5P satellite data with Earth-based monitoring data.

METHODS: The study assessed geospatial data on atmospheric air quality in Cherepovets. Sentinel-5P satellite data provided by the European Space Agency under the Copernicus program were analyzed using Google Earth Engine-based software. Satellite monitoring data were compared with those from the Severstal open service for atmospheric air quality monitoring in Cherepovets.

RESULTS: Software for analyzing satellite monitoring data on atmospheric air quality in Cherepovets was developed using Google Earth Engine and JavaScript. Digital maps of nitrogen dioxide and sulfur dioxide atmospheric pollution were created. Satellite monitoring data were compared with Severstal's Earth-based monitoring data.

CONCLUSION: Software for creating digital maps of atmospheric pollution by criteria pollutants (sulfur dioxide and nitrogen dioxide) has been developed. The differences between satellite and Earth-based monitoring data on atmospheric pollution in Cherepovets were analyzed.

About the authors

Sophia A. Tsareva

Yaroslavl State Technical University; Yaroslavl State Medical University

Author for correspondence.
Email: zarew@rambler.ru
ORCID iD: 0000-0003-2099-4885
SPIN-code: 5279-4175
Scopus Author ID: 9038734600

Cand. Sci. (Chemistry), Associate Professor

Russian Federation, Yaroslavl; Yaroslavl

Elena G. Lileeva

Yaroslavl State Medical University

Email: elileeva2006@yandex.ru
ORCID iD: 0000-0001-6048-8974
SPIN-code: 4287-6652

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Yaroslavl

Yuri V. Tsarev

Yaroslavl State Technical University

Email: tsarevyv@ystu.ru
ORCID iD: 0000-0002-4337-2897
SPIN-code: 7991-3530

Cand. Sci. (Engineering), Associate Professor

Russian Federation, Yaroslavl

Nataliya S. Dybulina

Yaroslavl State Technical University

Email: dybulinans@gmail.com
ORCID iD: 0009-0006-4139-639X
SPIN-code: 2758-5320
Russian Federation, Yaroslavl

Sabrina F. Velimetova

Yaroslavl State Technical University

Email: sabrinavelimetova@icloud.com
ORCID iD: 0009-0007-7891-2682
Russian Federation, Yaroslavl

References

  1. Morozova AE, Sizov OS, Elagin PO, et al. Integrated assessment of atmospheric air quality in the largest cities of Russia based on TROPOMI (Sentinel-5P) data for 2019–2020. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2022;19(4):23–39. doi: 10.21046/2070-7401-2022-19-4-23-39 EDN: AKKSYT
  2. Li B, Hu Q, Gao M, et al. Physical informed neural network improving the WRF-CHEM results of air pollution using satellite-based remote sensing data. Atmospheric Environment. 2023;311:120031. doi: 10.1016/j.atmosenv.2023.120031
  3. Ababio BA, Ashong GW, Agyekum ThP, et al. Comprehensive health risk assessment of urban ambient air pollution (PM2.5, NO2 and O3) in Ghana. Ecotoxicol Environ Saf. 2025;289:117591. doi: 10.1016/j.ecoenv.2024.117591
  4. Sakti AD, Anggraini TS, Ihsan KTN, et al. Multi-air pollution risk assessment in Southeast Asia region using integrated remote sensing and socio-economic data products. Sci Total Environ. 2023;854:158825. doi: 10.1016/j.scitotenv.2022.158825
  5. Rahimi NR, Azhdarpoor A, Fouladi-Fard R. Exposure to tropospheric ozone and NO2 in the ambient air of Tehran metropolis: Spatiotemporal distribution and inhalation health risk assessment. Physics and Chemistry of the Earth. Parts A/B/C. 2024;136:103777. doi: 10.1016/j.pce.2024.103777
  6. Dammers E, Tokaya J, Mielke C, et al. Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)? Geosci Model Dev. 2024;17(12):4983–5007. doi: 10.5194/gmd-17-4983-2024 EDN: BALSGF
  7. Cersosimo A, Serio C, Masiello G. TROPOMI NO2 tropospheric column data: regridding to 1 km grid-resolution and assessment of their consistency with in situ surface observations. Remote Sensing. 2020;12(14):2212. doi: 10.3390/rs12142212
  8. Goldberg DL, Anenberg SC, Kerr GH, et al. TROPOMI NO2 in the United States: a detailed look at the annual averages, weekly cycles, effects of temperature, and correlation with surface NO2 concentrations. Earth's Future. 2021;9(4):e2020EF001665. doi: 10.1029/2020EF001665
  9. Jeong U, Hong H. Assessment of tropospheric concentrations of NO2 from the TROPOMI/Sentinel-5 precursor for the estimation of long-term exposure to surface NO2 over South Korea. Remote Sens. 2021;13(10):1877. doi: 10.3390/rs13101877

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Digital map of nitrogen dioxide (а) and sulfur dioxide (b) levels in Cherepovets according to Sentinel-5P satellite data (as of March 30, 2025). Dots indicate Earth-based monitoring stations: 1, station No. 1 (Stroitel Community Center); 2, station No. 2 (Privokzalny Square); 3, station No. 3 (Metallurg Stadium); 4, station No. 4 (Chemical Engineering College); 5, station No. 5 (Secondary School No. 7); 6, station No. 6 (Raduzhny Waterpark).

Download (659KB)
3. Fig. 2. Nitrogen dioxide (a) and sulfur dioxide (b) levels according to Earth-based and satellite monitoring (as of March 30, 2025).

Download (261KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».