Effect of Soil Heavy Metal Contamination on Incidence of Nervous System Disorders

Cover Page

Cite item

Abstract

Human activities in industrialized economies lead to soil contamination with highly neurotoxic heavy metals accumulating in body tissues. Given the urgent environmental issue of heavy metal accumulation in soil and their toxicity to humans, the aim of the study was to analyse the available scientific data on their neurotoxicity. To achieve this aim, evidence-based papers from the relevant open databases over the past five years have been reviewed. According to scientific evidence, cadmium, chromium, lead, and mercury are considered the most common neurotoxic metals that pollute the soil. The heavy metal toxicity to nervous tissue has various mechanisms, such as the impairment of the cell cycle and metabolism and blood-brain barrier disruption. This leads to structural degeneration of the central nervous system. Cadmium, lead, mercury, and chromium can affect the development and functions of the nervous system, resulting in neurotoxicity that can be fatal in cases of acute poisoning. Screening, identification of populations with the increased risk of metal poisoning, and primary prevention in environmentally unfavourable areas are the appropriate actions to solve the problem of heavy metal contamination of the soil and their adverse effect on the body.

About the authors

Gulnara A. Batyrova

West Kazakhstan Marat Ospanov Medical University

Author for correspondence.
Email: g.batyrova@zkmu.kz
ORCID iD: 0000-0001-7970-4059
SPIN-code: 8584-5024

PhD

Kazakhstan, Aktobe

Gulmira A. Umarova

West Kazakhstan Marat Ospanov Medical University

Email: uga_80@mail.ru
ORCID iD: 0000-0001-7637-113X
SPIN-code: 9146-3959

PhD

Kazakhstan, Aktobe

Saltanat T. Urazayeva

West Kazakhstan Marat Ospanov Medical University

Email: s.urazaeva@mail.ru
ORCID iD: 0000-0002-4773-0807

MD, Cand. Sci. (Medicine)

Kazakhstan, Aktobe

Umbetali K. Sarsembin

K. Zhubanov Aktobe Regional University

Email: umbetali_s.k@mail.ru
ORCID iD: 0000-0002-0796-3737

PhD

Kazakhstan, Aktobe

Assel N. Issaldinova

West Kazakhstan Marat Ospanov Medical University

Email: aselisaldinova@gmail.com
ORCID iD: 0000-0003-4843-5823

Master of the Educational program

Kazakhstan, Aktobe

Gulaim E. Taskozhina

West Kazakhstan Marat Ospanov Medical University

Email: g.taskozhina@zkmu.kz
ORCID iD: 0000-0003-3922-0054

PhD Student

Kazakhstan, Aktobe

Zhamilia X. Issanguzhina

West Kazakhstan Marat Ospanov Medical University

Email: gamilia0452@gmail.com
ORCID iD: 0000-0002-7557-8486

MD, Cand. Sci. (Medicine)

Kazakhstan, Aktobe

Yeskendir A. Umarov

West Kazakhstan Marat Ospanov Medical University

Email: eskendir.um@gmail.com
ORCID iD: 0000-0002-5661-4023

Master of the Natural Sciences

Kazakhstan, Aktobe

References

  1. Okereafor U, Makhatha M, Mekuto L, et al. Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int J Environ Res Public Health. 2020;17(7):2204. doi: 10.3390/ijerph17072204
  2. Bhat SA, Hassan T, Majid S. Heavy metal toxicity and their harmful effects on living organisms — a review. International Journal of Medical Science and Diagnosis Research. 2019;3(1):106–122.
  3. Mitra S, Chakraborty AJ, Tareq AM, et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University-Science. 2022;34(3):101865. doi: 10.1016/j.jksus.2022.101865
  4. Shen X, Dai M, Yang J, et al. A critical review on the phytoremediation of heavy metals from environment: performance and challenges. Chemosphere. 2022;291(Pt 3):132979. doi: 10.1016/j.chemosphere.2021.132979
  5. Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9):e04691. doi: 10.1016/j.heliyon.2020.e04691
  6. Sall ML, Diaw AKD, Gningue-Sall D, et al. Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ Sci Pollut Res Int. 2020;27(24):29927–29942. doi: 10.1007/s11356-020-09354-3
  7. Rahman Z, Singh VP. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environ Sci Pollut Res Int. 2020;27(22):27563–27581. doi: 10.1007/s11356-020-08903-0
  8. Zaynab M, Al-Yahyai R, Ameen A, et al. Health and environmental effects of heavy metals. Journal of King Saud University-Science. 2021;34(1):101653. doi: 10.1016/j.jksus.2021.101653
  9. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics. 2021;9(3):42. doi: 10.3390/toxics9030042
  10. Ahmad W, Alharthy RD, Zubair M, et al. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci Rep. 2021;11(1):17006. doi: 10.1038/s41598-021-94616-4
  11. Ijomone OM, Ifenatuoha CW, Aluko OM, et al. The aging brain: impact of heavy metal neurotoxicity. Crit Rev Toxicol. 2020;50(9):801–814. doi: 10.1080/10408444.2020.1838441
  12. Rehman Q, Rehman K, Akash MSH. Heavy metals and neurological disorders: from exposure to preventive interventions. In: MSH Akash, K Rehman, editors. Environmental contaminants and neurological disorders. Emerging contaminants and associated treatment technologies. Springer, Cham; 2021. doi: 10.1007/978-3-030-66376-6_4
  13. Mehta I, Verma M, Quasmi MN, et al. Emerging roles of histone modifications in environmental toxicants-induced neurotoxicity. Toxicology. 2025;515:154164. doi: 10.1016/j.tox.2025.154164
  14. Kumar P. Heavy metal contamination causes protein misfolding, leading to neurodegenerative disorders. In: Protein Misfolding in Neurodegenerative Diseases. Academic Press; 2025. P. 463–492. ISBN: 978-0443187162
  15. Ijomone OK, Ukwubile II, Aneke VO, et al. Glial perturbation in metal neurotoxicity: implications for brain disorders. Neuroglia. 2025;6(1):4. doi: 10.3390/neuroglia6010004
  16. Althomali RH, Abbood MA, Saleh EAM, et al. Exposure to heavy metals and neurocognitive function in adults: a systematic review. Environ Sci Eur. 2024;36(1):18. doi: 10.1186/s12302-024-00843-7
  17. Chen J, Chen J, Li M, et al. Probabilistic assessment of the cumulative risk from dietary heavy metal exposure in Chongqing, China using a hazard-driven approach. Sci Rep. 2025;15(1):2229. doi: 10.1038/s41598-024-83299-2
  18. Fu Z, Xi S. The effects of heavy metals on human metabolism. Toxicol Mech Methods. 2020;30(3):167–176. doi: 10.1080/15376516.2019.1701594
  19. Chen S, Zhao R, Sun X, et al. Toxicity and biocompatibility of liquid metals. Adv Healthc Mater. 2023;12(3):e2201924. doi: 10.1002/adhm.202201924
  20. Prasad S, Yadav KK, Kumar S, et al. Chromium contamination and effect on environmental health and its remediation: a sustainable approaches. J Environ Manage. 2021;285:112174. doi: 10.1016/j.jenvman.2021.112174
  21. Alvarez CC, Bravo Gómez ME, Hernández Zavala A. Hexavalent chromium: regulation and health effects. J Trace Elem Med Biol. 2021;65:126729. doi: 10.1016/j.jtemb.2021.126729
  22. Chen L, Zhou M, Wang J, et al. A global meta-analysis of heavy metal(loid)s pollution in soils near copper mines: evaluation of pollution level and probabilistic health risks. Sci Total Environ. 2022;835:155441. doi: 10.1016/j.scitotenv.2022.155441
  23. Long Z, Huang Y, Zhang W, et al. Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ Monit Assess. 2021;193(1):20. doi: 10.1007/s10661-020-08807-z
  24. Adimalla N, Chen J, Qian H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: a case study from an urban region of South India. Ecotoxicol Environ Saf. 2020;194:110406. doi: 10.1016/j.ecoenv.2020.110406
  25. Wang M, Chen Z, Song W, et al. A review on cadmium exposure in the population and intervention strategies against cadmium toxicity. Bull Environ Contam Toxicol. 2021;106(1):65–74. doi: 10.1007/s00128-020-03088-1
  26. WHO (2019). Preventing disease through healthy environments: exposure to cadmium: a major public health concern. World Health Organization; 2019. 6 р. URL: https://iris.who.int/bitstream/handle/10665/329480/WHO-CED-PHE-EPE-19.4.3-eng.pdf
  27. Suhani I, Sahab S, Srivastava V, Singh RP. Impact of cadmium pollution on food safety and human health. Current Opinion in Toxicology. 202;27:1–7. doi: 10.1016/j.cotox.2021.04.004
  28. Rizwan M, Ali S, Rehman MZU, Maqbool A. A critical review on the effects of zinc at toxic levels of cadmium in plants. Environ Sci Pollut Res Int. 2019;26(7):6279–6289. doi: 10.1007/s11356-019-04174-6
  29. Wu J, Mock HP, Giehl RFH, et al. Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. J Hazard Mater. 2019;364:581–590. doi: 10.1016/j.jhazmat.2018.10.052
  30. Andjelkovic M, Buha Djordjevic A, Antonijevic E, et al. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int J Environ Res Public Health. 2019;16(2):274. doi: 10.3390/ijerph16020274
  31. Zhou R, Zhao J, Li D, et al. Combined exposure of lead and cadmium leads to the aggravated neurotoxicity through regulating the expression of histone deacetylase 2. Chemosphere. 2020;252:126589. doi: 10.1016/j.chemosphere.2020.126589
  32. Bi SS, Talukder M, Sun XT, et al. Cerebellar injury induced by cadmium via disrupting the heat-shock response. Environ Sci Pollut Res Int. 2023;30(9):22550–22559. doi: 10.1007/s11356-022-23771-6
  33. Branca JJV, Fiorillo C, Carrino D, et al. Cadmium-induced oxidative stress: focus on the central nervous system. Antioxidants (Basel). 2020;9(6):492. doi: 10.3390/antiox9060492
  34. Chandravanshi L, Shiv K, Kumar S. Developmental toxicity of cadmium in infants and children: a review. Environ Anal Health Toxicol. 2021;36(1):e2021003-0. doi: 10.5620/eaht.2021003
  35. Ruczaj A, Brzóska MM. Environmental exposure of the general population to cadmium as a risk factor of the damage to the nervous system: a critical review of current data. J Appl Toxicol. 2023;43(1):66–88. doi: 10.1002/jat.4322
  36. Mubeena Mariyath PM, Shahi MH, Tayyab M, et al. Cadmium-induced neurodegeneration and activation of noncanonical sonic hedgehog pathway in rat cerebellum. J Biochem Mol Toxicol. 2019;33(4):e22274. doi: 10.1002/jbt.22274
  37. Chouit Z, Djellal D, Haddad S, et al. Potentiation of the apoptotic signaling pathway in both the striatum and hippocampus and neurobehavioral impairment in rats exposed chronically to a low-dose of cadmium. Environ Sci Pollut Res Int. 2021;28(3):3307–3317. doi: 10.1007/s11356-020-10755-7
  38. Branca JJV, Maresca M, Morucci G, et al. Effects of cadmium on ZO-1 tight junction integrity of the blood brain barrier. Int J Mol Sci. 2019;20(23):6010. doi: 10.3390/ijms20236010
  39. Ge Y, Song X, Chen L, et al. Cadmium induces actin cytoskeleton alterations and dysfunction in Neuro-2a cells. Environ Toxicol. 2019;34(4):469–475. doi: 10.1002/tox.22700
  40. Polykretis P, Cencetti F, Donati C, et al. Cadmium effects on superoxide dismutase 1 in human cells revealed by NMR. Redox Biol. 2019;21:101102. doi: 10.1016/j.redox.2019.101102
  41. Kumar A, Kumar A, M M S CP, et al. Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. Int J Environ Res Public Health. 2020;17(7):2179. doi: 10.3390/ijerph17072179
  42. Chandrasekhar C, Ray JG. Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Ecotoxicol Environ Saf. 2019;171:26–36. doi: 10.1016/j.ecoenv.2018.12.058
  43. Apte A, Bradford K, Dente C, Smith RN. Lead toxicity from retained bullet fragments: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2019;87(3):707–716. doi: 10.1097/TA.0000000000002287
  44. Naranjo VI, Hendricks M, Jones KS. Lead toxicity in children: an unremitting public health problem. Pediatr Neurol. 2020;113:51–55. doi: 10.1016/j.pediatrneurol.2020.08.005
  45. Sawicki K, Czajka M, Matysiak-Kucharek M, et al. Toxicity of metallic nanoparticles in the central nervous system. Nanotechnology Reviews, 2019;8(1):175–200. doi: 10.1515/ntrev-2019-0017
  46. Pacyna JM. Recent advances in mercury research. Sci Total Environ. 2020;738:139955. doi: 10.1016/j.scitotenv.2020.139955
  47. Kim H, Lee J, Woo HD, et al. Dietary mercury intake and colorectal cancer risk: a case-control study. Clin Nutr. 2020;39(7):2106–2113. doi: 10.1016/j.clnu.2019.08.025
  48. Yang L, Zhang Y, Wang F, et al. Toxicity of mercury: Molecular evidence. Chemosphere. 2020;245:125586. doi: 10.1016/j.chemosphere.2019.125586
  49. Abbott LC, Nigussie F. Mercury Toxicity and neurogenesis in the mammalian brain. Int J Mol Sci. 2021;22(14):7520. doi: 10.3390/ijms22147520
  50. Yawei S, Jianhai L, Junxiu Z, et al. Epidemiology, clinical presentation, treatment, and follow-up of chronic mercury poisoning in China: a retrospective analysis. BMC Pharmacol Toxicol. 2021;22(1):25. doi: 10.1186/s40360-021-00493-y
  51. Zulaikhah ST, Wahyuwibowo J, Pratama AA. Mercury and its effect on human health: a review of the literature. Int J Public Health. 2020;9(2):103–114. doi: 10.11591/ijphs.v9i2.20416
  52. Du B, Yin R, Fu X, et al. Use of mercury isotopes to quantify sources of human inorganic mercury exposure and metabolic processes in the human body. Environ Int. 2021;147:106336. doi: 10.1016/j.envint.2020.106336
  53. Dórea JG. Neurotoxic effects of combined exposures to aluminum and mercury in early life (infancy). Environ Res. 2020;188:109734. doi: 10.1016/j.envres.2020.109734
  54. Pavesi T, Moreira JC. Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol. 2020;40(9):1183–1197. doi: 10.1002/jat.3965
  55. Ukhurebor KE, Aigbe UO, Onyancha RB, et al. Effect of hexavalent chromium on the environment and removal techniques: a review. J Environ Manage. 2021;280:111809. doi: 10.1016/j.jenvman.2020.111809
  56. Ma J, Yan L, Guo T, et al. Association of typical toxic heavy metals with schizophrenia. Int J Environ Res Public Health. 2019;16(21):4200. doi: 10.3390/ijerph16214200
  57. Wise Jr JP, Young JL, Cai J, Cai L. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. Environ Int. 2022;158:106877. doi: 10.1016/j.envint.2021.106877
  58. Hossini H, Shafie B, Niri AD, et al. A comprehensive review on human health effects of chromium: insights on induced toxicity. Environ Sci Pollut Res Int. 2022;29(47):70686–70705. doi: 10.1007/s11356-022-22705-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Search and selection strategy.

Download (191KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».