Паттерн-распознающие рецепторы и их сигнальные пути в реализации механизмов врожденного иммунитета при вирусных инфекциях

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматриваются особенности организации и функционирования паттерн-распознающих рецепторов и сигнальных путей в индукции развития противовирусного иммунного ответа. Распознавание антигенных структур вируса осуществляется патоген-ассоциированными молекулярными паттернами клеток врожденного иммунитета. Это Toll-подобные рецепторы, нуклеотид-связывающие олигомеризационные доменоподобные рецепторы, рецепторы лектина C-типа и RIG-I-подобные рецепторы. Функционирование этих рецепторных структур зависит от белковых молекул, обеспечивающих проведение сигналов активации. Это белки-адаптеры первичного ответа миелоидной дифференцировки 88, интерлейкин-1 рецептор-ассоциированная киназа, ядерный фактор-kB. Взаимодействия клеточных белков в активации сигнальных путей являются сложными и реакции рецептор-лиганд могут приводить к различным исходам в одной клетке, в большинстве случаев, приводящие к ограничению размножения вируса. Важным препятствием для эффективного распознавания вирусов и развития адекватного иммунного ответа является близкая организация вирусных антигенов и рецепторных структур клетки. С особенностями развития иммунного ответа связана роль белковых молекул LGP2, которые могут быть не только положительными, но и отрицательными регуляторами передачи сигналов возбуждения с внутриклеточных цитоплазматических геликазных рецепторов. Ряд вирусных белков ингибируют сигналы активации, что в итоге приводит к различным вариантам развития иммунного ответа. Особая роль принадлежит трансмембранному белку эндоплазматической сети, повышающему экспрессию интерферона β — стимулятора генов интерферона, обеспечивающих детекцию дезоксирибонуклеиновокислотных вирусов. Максимальная активация этого белка, обеспечивает эффективное развитие клеточного противовирусного иммунного ответа.

 

Об авторах

Александр Витальевич Москалев

Военно-медицинская академия имени С.М. Кирова

Email: alexmav195223@yandex.ru
ORCID iD: 0000-0002-3403-3850
SPIN-код: 8227-2647

доктор медицинских наук, профессор

Россия, Санкт-Петербург

Борис Юрьевич Гумилевский

Военно-медицинская академия им. С.М. Кирова

Email: alexmav195223@yandex.ru
SPIN-код: 3428-7704
Scopus Author ID: 6602391269
ResearcherId: J-1841-2017

доктор медицинских наук, профессор

Россия, Санкт-Петербург

Андрей Васильевич Апчел

Военно-медицинская академия имени С.М. Кирова

Автор, ответственный за переписку.
Email: apchelvya@mail.ru
ORCID iD: 0000-0001-7658-4856
SPIN-код: 4978-0785
Scopus Author ID: 6507529350
ResearcherId: Е-8190-2019

доктор медицинских наук, профессор

Россия, Санкт-Петербург

Василий Николаевич Цыган

Военно-медицинская академия имени С.М. Кирова

Email: vn-t@mail.ru
ORCID iD: 0000-0003-1199-0911
SPIN-код: 7215-6206

доктор медицинских наук, профессор

Россия, Санкт-Петербург

Список литературы

  1. Bowie A.G. TRIM-ing down Tolls // Nat Immunol. 2008. Vol. 9. P. 348–350. doi: 10.1038/ni0408-348
  2. Ahmad L., Mostowy S., Sancho-Shimizu S. Autophagy-Virus Interplay: From Cell Biology to Human Disease // Front Cell Dev Biol. 2018. Vol. 19. Р. 155. doi: 10.3389/fcell.2018.00155
  3. Shroff A., Nazarko T.Y. The Molecular Interplay between Human Coronaviruses and Autophagy // Cells. 2021. Vol. 10, No. 8. P. 20–22. doi: 10.3390/cells10082022
  4. Finlay B.B., McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens // Cells. 2006. Vol. 124, No. 4. P. 767–782. doi: 10.1016/j.cell.2006.01.034
  5. Gay N.J., Gangloff M. Structure and function of Toll receptors and their ligands // Annu Rev Biochem. 2007. Vol. 76. P. 141–165. doi: 10.1146/annurev.biochem.76.060305.151318
  6. Grove J., Marsh M. The cell biology of receptor-mediated virus entry // J Cell Biol. 2011. Vol. 195, No. 7. P. 1071–1082. doi: 10.1083/jcb.201108131
  7. Kumar H., Kawai T., Akira S. Pathogen recognition by the innate immune system // Int Rev Immunol. 2011. Vol. 30, No. 1. P. 16–34. doi: 10.3109/08830185.2010.529976
  8. Medzhitov R. Recognition of microorganisms and activation of the immune response // Nature. 2007. Vol. 449. P. 819–826. doi: 10.1038/nature06246
  9. Silverman R.H. Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response // J Virol. 2007. Vol. 81, No. 23. P. 12720–12729. doi: 10.1128/JVI.01471-07
  10. Towers G.J. The control of viral infection by tripartite motif proteins and cyclophilin A // Retrovirology. 2007. Vol. 4. P. 40–46. doi: 10.1186/1742-4690-4-40
  11. Trinchieri G., Sher A. Cooperation of Toll-like receptor signals in innate immune defence // Nat Rev Immunol. 2007. Vol. 7. P. 179–190. doi: 10.1038/nri2038
  12. Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function // Immunity. 2019. Vol. 50, No. 1. P. 37–50. doi: 10.1016/j.immuni.2018.12.027
  13. Cullen B.R., Cherry S., tenOever B.R. Is RNA interference a physiologically relevant innate antiviral immune response in mammals? // Cell Host Microbe. 2013. Vol. 14, No. 4. P. 374–378. doi: 10.1016/j.chom.2013.09.011
  14. Behzadi P., García-Perdomo H.A., Karpiński T.M. Toll-Like Receptors: General Molecular and Structural Biology // J Immunol Res. 2021. Vol. 2021. ID 9914854. doi: 10.1155/2021/9914854
  15. Zipfel C. Plant pattern-recognition receptors // Trends Immunol. 2014. Vol. 35, No. 7. P. 345–351. doi: 10.1016/j.it.2014.05.004
  16. Diner B.A., Lum K.K., Javitt A., Cristea L.M. Interactions of the Antiviral Factor Interferon Gamma-Inducible Protein 16. NIFI16 Mediate Immune Signaling and Herpes Simplex Virus-1 Immunosuppression // Mol Cell Proteomics. 2015. Vol. 14, No. 9. P. 2341–2356. doi: 10.1074/mcp.M114.047068
  17. Gitlin L., Barchet W., Gilfillan S., et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus // Proc Natl Acad Sci USA. 2006. Vol. 103, No. 22. P. 8459–8464. doi: 10.1073/pnas.0603082103
  18. Chahal J.S., Qi J., Flint S.J. The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells // PLoS Pathog. 2012. Vol. 8, No. 8. ID e1002853. doi: 10.1371/journal.ppat.1002853
  19. Takata M.A., Gonçalves-Carneiro D., Zang T.M., et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA // Nature. 2017. Vol. 550. P. 124–127. doi: 10.1038/nature24039
  20. Thapa R.J., Ingram J.P., Ragan K.B., et al. DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death // Cell Host Microbe. 2016. Vol. 20, No. 5. P. 674–681. doi: 10.1016/j.chom.2016.09.014
  21. Hornung V., Hartmann R., Ablasser A., Hopfner K.-P. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids // Nat Rev Immunol. 2014. Vol. 14. P. 521–528. doi: 10.1038/nri3719
  22. Ma Z., Damania B. The cGAS-STING defense pathway and its counteraction by viruses // Cell Host Microbe. 2016. Vol. 19, No. 2. P. 150–158. doi: 10.1016/j.chom.2016.01.010
  23. Maillard P.V., van der Veen A.G., Poirier E.Z., e Sousa C.R. Slicing and dicing viruses: antiviral RNA interference in mammals // EMBO J. 2019. Vol. 38, No. 8. ID e100941. doi: 10.15252/embj.2018100941
  24. Hornung V., Hartmann R., Ablasser A., et al. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids // Nat Rev Immunol. 2014. Vol. 14, No. 8. P. 521–528. doi: 10.1038/nri3719
  25. Kaiser S.M., Malik H.S., Emerman M. Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein // Science. 2007. Vol. 316, No. 5832. P. 1756–1758. doi: 10.1126/science.1140579
  26. Lee H.K., Lund J.M., Ramanathan B., et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells // Science. 2007. Vol. 315, No. 5817. P. 1398–1401. doi: 10.1126/science.1136880
  27. Sun L., Wu J., Du F., et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway // Science. 2013. Vol. 339, No. 6121 P. 786–791. doi: 10.1126/science.1232458
  28. Hornung V., Hartmann R., Ablasser A., et al. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids // Nat Rev Immunol. 2014. Vol. 14, No. 8. P. 521–528. doi: 10.1038/nri3719
  29. Kudchodkar S.B., Levine B. Viruses and autophagy // Rev Med Virol. 2009. Vol. 19, No. 6. P. 359–378. doi: 10.1002/rmv.630
  30. Hemann E.A., Green R., Turnbull J.B., et al. Interferon-λ modulates dendritic cells to facilitate T cell immunity during infection with influenza A virus // Nat Immunol. 2019. Vol. 20. P. 1035–1045. doi: 10.1038/s41590-019-0408-z
  31. Sun L., Wu J., Du F., et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway // Science. 2013. Vol. 339, No. 6121. P. 786–791. doi: 10.1126/science.1232458
  32. Thapa R.J., Ingram J.P., Ragan K.B., et al. DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death // Cell Host Microbe. 2016. Vol. 20, No. 5. P. 674–681. doi: 10.1016/j.chom.2016.09.014
  33. van Gent M., Braem S.G.E., de Jong A., et al. Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling // PLoS Pathog. 2014. Vol. 10, No. 2. ID e1003960. doi: 10.1371/journal.ppat.1003960
  34. Wu J., Sun L., Chen X., et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA // Science. 2013. Vol. 339, No. 6121. P. 826–830. doi: 10.1126/science.1229963

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. Взаимодействие cGAS/STING во врожденном иммунитете: дцДНК в цитоплазме (микробная с геномами ДНК, или из ядра клетки, или из поврежденных митохондрий) обнаруживается циклической синтазой GMP-AMP (cGAMP) (cGAS), которая активируется для синтеза циклического динуклеотида cGAMP(2'–5') в качестве его второй молекулы-мессенджера (с использованием субстратов ATP и GTP). cGAMP(2'–5'), затем связывается и активирует эндоплазматический ретикулум (ER)-резидентный рецептор STING (стимулятор генов интерферона). Активированный STING перемещается в аппарат Гольджи, где он связывается с TBK1 (TANK-связывающая киназа 1) для активации IRF3 и индуцирования активации NF-kB

Скачать (714KB)

© Москалев А.В., Гумилевский Б.Ю., Апчел В.Я., Цыган В.Н., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах