神经影像学标志物在评估儿童肌营养不良患者运动康复安全性中的作用

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

方法:本研究纳入86例基因学确诊的杜氏肌营养不良(Duchenne muscular dystrophy, DMD)患儿(平均年龄7.5±2.4岁)及42例肢带型肌营养不良(limb-girdle muscular dystrophies, LGMD)患儿(平均年龄11.8±3.3岁)。所有患者均接受为期4个月的医学康复课程,其中包括PT练习的组合:有氧训练、肌肉牵伸练习以及功率自行车训练。安全性评估涵盖临床、实验室和神经影像学指标。

结果:MRI检查显示,两组患者在完成无负荷有氧运动后,骨盆带、肩带、大腿及小腿主要肌群的 水相关T2信号 未见统计学显著升高,提示未出现炎症或水肿加重。所有不良事件均表现为轻微、短暂的症状,对康复过程无明显影响,也 无需额外的药物或非药物治疗。共记录到8例因进行向心或离心运动导致的骨骼肌损伤。在DMD患儿组,骨骼肌在运动前的信号强度在动态随访中分别为34.9±1.0和44.1±3.7 ms(p <0.01)。在LGMD患儿组,信号强度分别为33.6±2.3和44.3±4.1 ms(p <0.01)。

结论:本研究所制定的康复方案,包括无负荷有氧运动,不会导致不同类型肌营养不良患儿骨骼肌损伤,这一点已通过神经影像学、临床和实验室方法证实。在DMD患儿中,骨骼肌来源于水分的MR信号平均增加20.4±5.8%,而在LGMD患儿中则增加23.8±6.3%。这种增加具有临床意义,提示骨骼肌损伤并伴有相应的症状表现。

作者简介

Vasily M. Suslov

St. Petersburg State Pediatric Medical University

编辑信件的主要联系方式.
Email: vms.92@mail.ru
ORCID iD: 0000-0002-5903-8789
SPIN 代码: 4482-9918

Suslov, MD, Cand. Sci. (Medicine), Associate Professor

俄罗斯联邦, Saint Petersburg

Dmitry I. Rudenko

St. Petersburg State Pediatric Medical University

Email: dmrud_h2@mail.ru
ORCID iD: 0009-0008-2770-6755
SPIN 代码: 8002-0690

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Gennady N. Ponomarenko

Federal Scientific and Aducational Centre of Medical and Social Expertis and Rehabilitation n. a. G.A. Albrecht

Email: ponomarenko_g@mail.ru
ORCID iD: 0000-0001-7853-4473
SPIN 代码: 8234-7005

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg

Galina A. Suslova

St. Petersburg State Pediatric Medical University

Email: docgas@mail.ru
ORCID iD: 0000-0002-7448-762X
SPIN 代码: 8110-0058

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg

Damir A. Malekov

St. Petersburg State Pediatric Medical University

Email: d.a.malekov@gmail.com
ORCID iD: 0000-0002-1358-4725
SPIN 代码: 8804-4630
俄罗斯联邦, Saint Petersburg

Aleksandra D. Suslova

Children's City Polyclinic No. 29, Saint Petersburg

Email: fifa379@mail.ru
ORCID iD: 0009-0009-4979-1951
俄罗斯联邦, Saint Petersburg

参考

  1. Angelini C. LGMD. Identification, description and classification. Acta Myol. 2020;39(4):207–217. doi: 10.36185/2532-1900-024
  2. Bouchard C, Tremblay JP. Limb-Girdle Muscular Dystrophies Classification and Therapies. J Clin Med. 2023;12(14):4769. doi: 10.3390/jcm12144769
  3. Romitti PA, Zhu Y, Puzhankara S, et al Prevalence of Duchenne and Becker muscular dystrophies in the United States. Pediatrics. 2015;135(3):513–521. doi: 10.1542/peds.2014-2044
  4. Salari N, Fatahi B, Valipour E, et al. Global prevalence of Duchenne and Becker muscular dystrophy: a systematic review and meta-analysis. J Orthop Surg Res. 2022;17(1):96. doi: 10.1186/s13018-022-02996-8
  5. Liu W, Pajusalu S, Lake NJ, et al. Estimating prevalence for limb-girdle muscular dystrophy based on public sequencing databases. Genet Med. 2019;21(11):2512–2520. doi: 10.1038/s41436-019-0544-8
  6. Shnayder NA, Nikolayeva TYa, Boroeva EN, et al. Autosomal dominant limb-girdle muscular dystrophy: Leyden–Möbius pelvifemoral form. Neuromuscular diseases. 2013;(1):46–62. EDN: PXJIDL
  7. Johnson NE, Statland JM. The Limb-Girdle Muscular Dystrophies. Continuum (Minneap Minn). 2022;28(6):1698–1714. doi: 10.1212/CON.0000000000001178
  8. Sidorova OP, Kotov AS, Bunak MS, Filyushkin YuN. New classification of limb-girdle muscular dystrophy. Neuromuscular diseases. 2022;12(3):10–16. doi: 10.17650/2222-8721-2022-12-3-10-16 EDN: LSCMFN
  9. Suslov VM, Ivanov DO, Rudenko DI, Liberman LN, Suslova GA. Clinical case, disease course dynamics in a patient with Emery–Dreifuss muscular dystrophy caused by a mutation in the SYNE2 gene. Pediatr. 2024;15(6):83–91. (In Russ.) doi: 10.17816/PED15583-91
  10. Narasimhaiah D, Uppin MS, Ranganath P. Genetics and muscle pathology in the diagnosis of muscular dystrophies: An update. Indian J PatholMicrobiol. 2022;65(Suppl):S259–S270. doi: 10.4103/ijpm.ijpm_1074_21
  11. Tawil R. Facioscapulohumeral muscular dystrophy. Handb Clin Neurol. 2018;148:541–548. doi: 10.1016/B978-0-444-64076-5.00035-1
  12. Younger DS. Childhood muscular dystrophies. Handb Clin Neurol. 2023;195:461–496. doi: 10.1016/B978-0-323-98818-6.00024-8
  13. Kitaeva VE, Kotov AS, Bunak MS. Progressive Muscle Dystrophies. Russian Neurological Journal. 2021;26(2):43–57.
  14. Suslov VM, Lieberman LN, Ponomarenko GN, et al. Safety markers for isotonic exercises without weights in hereditary myopathies. Fizicheskaya i reabilitacionnaya medicina. 2023;5(4):18–27. doi: 10.26211/2658-4522-2023-5-4-18-27 EDN: EFIAZH
  15. Birnkrant DJ, Bushby K, Bann CM, et al.; DMD Care Considerations Working Group. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17(3):251–267. doi: 10.1016/S1474-4422(18)30024-3
  16. Jackson MJ, Round JM, Newham DJ, Edwards RH. An examination of some factors influencing creatine kinase in the blood of patients with muscular dystrophy. Muscle Nerve. 1987;10(1):15–21. doi: 10.1002/mus.880100105
  17. Mao B, Xiong H, Jiao H, et al. Value of muscle enzyme analysis in differential diagnosis of childhood myopathic hyper-creatine kinase-emia. Beijing Da Xue Xue Bao Yi Xue Ban. 2014;46(1):130–7. (In Chinese).
  18. Zhu Y, Zhang H, Sun Y, et al. Serum Enzyme Profiles Differentiate Five Types of Muscular Dystrophy. Dis Markers. 2015;2015:543282. doi: 10.1155/2015/543282
  19. Bekkelund SI. Leisure physical exercise and creatine kinase activity. The Tromsø study. Scand J Med Sci Sports. 2020;30(12):2437–2444. doi: 10.1111/sms.13809
  20. Koch AJ, Pereira R, Machado M. The creatine kinase response to resistance exercise. J Musculoskelet Neuronal Interact. 2014;14(1):68–77.
  21. Azzabou N, Loureiro de Sousa P, Caldas E, Carlier PG. Validation of a generic approach to muscle water T2 determination at 3T in fat-infiltrated skeletal muscle. J Magn Reson Imaging. 2015;41(3): 645–53. doi: 10.1002/jmri.24613
  22. Marty B, Baudin PY, Reyngoudt H, et al. Simultaneous muscle water T2 and fat fraction mapping using transverse relaxometry with stimulated echo compensation. NMR Biomed. 2016;29(4):431–43. doi: 10.1002/nbm.3459
  23. Moore U, Caldas de Almeida Araújo E, Reyngoudt H, et al. Water T2 could predict functional decline in patients with dysferlinopathy. J Cachexia Sarcopenia Muscle. 2022;13(6):2888–2897. doi: 10.1002/jcsm.13063
  24. Lott DJ, Taivassalo T, Senesac CR, et al. Walking activity in a large cohort of boys with Duchenne muscular dystrophy. Muscle Nerve. 2021;63(2):192–198. doi: 10.1002/mus.27119
  25. McMillan HJ, Gregas M, Darras BT, Kang PB. Serum transaminase levels in boys with Duchenne and Becker muscular dystrophy. Pediatrics. 2011;127(1):e132–6. doi: 10.1542/peds.2010-0929
  26. Rodríguez-Cruz M, Almeida-Becerril T, Atilano-Miguel S, et al. Natural History of Serum Enzyme Levels in Duchenne Muscular Dystrophy and Implications for Clinical Practice. Am J Phys Med Rehabil. 2020;99(12):1121–1128. doi: 10.1097/PHM.0000000000001500
  27. Malm C, Sjodin TL, Sjoberg B, et al. Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running. J Physiol. 2004;556(Pt 3):983–1000. doi: 10.1113/jphysiol.2003.056598
  28. Dombernowsky NW, Ölmestig JNE, Witting N, Kruuse C. Role of neuronal nitric oxide synthase (nNOS) in Duchenne and Becker muscular dystrophies — Still a possible treatment modality? Neuromuscul Disord. 2018;28(11):914–926. doi: 10.1016/j.nmd.2018.09.001
  29. Brancaccio P, Maffulli N, Limongelli FM. Creatine kinase monitoring in sport medicine. Br Med Bull. 2007;81–82:209–30. doi: 10.1093/bmb/ldm014
  30. Bellinger AM, Reiken S, Carlson C, et al. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med. 2009;15(3):325–30. doi: 10.1038/nm.1916
  31. Flanigan KM. Duchenne and Becker muscular dystrophies. Neurol Clin. 2014;32(3):671–88, viii. doi: 10.1016/j.ncl.2014.05.002
  32. Andersen SP, Sveen ML, Hansen RS, et al. Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy. Muscle Nerve. 2013;48(6):897–901. doi: 10.1002/mus.23846
  33. Totsuka M, Nakaji S, Suzuki K, Sugawara K, Sato K. Break point of serum creatine kinase release after endurance exercise. J Appl Physiol (1985). 2002;93(4):1280–6. doi: 10.1152/japplphysiol.01270.2001
  34. Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A. Duchenne muscular dystrophy. Nat Rev Dis Primers. 2021;7(1):13. doi: 10.1038/s41572-021-00248-3

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Mean T2 water signal intensity values in the pelvic and shoulder girdle, thigh, and calf muscles of patients with Duchenne muscular dystrophy before and after physical therapy exercise. On the x-axis: “1”, values before training, “2”, values after training.

下载 (89KB)
3. Fig. 2. Mean T2 water signal intensity values in the pelvic and shoulder girdle, thigh, and calf muscles of patients with limb-girdle muscular dystrophy before and after physical therapy exercise. On the x-axis: “1”, values before training, “2”, values after training.

下载 (98KB)
4. Fig. 3. T2 water signal intensity changes in patients with Duchenne muscular dystrophy.

下载 (36KB)
5. Fig. 4. T2 water signal intensity changes in patients with limb-girdle muscular dystrophies.

下载 (36KB)
6. Fig. 5. MRI images of the right thigh muscles of a 9-year-7-month-old patient with Duchenne muscular dystrophy before exercise (images 1) and during follow-up after concentric exercises (images 2): A, MSME images (TE = 80 ms) with selective extraction of T2 water signal (wT2); B, STIR images (TE = 60 ms).

下载 (101KB)
7. Fig. 6. MRI images of the right shoulder muscles of a 17-year-old patient with limb-girdle muscular dystrophy type 2A before exercise (images 1) and during follow-up (images 2): A, MSME images (TE = 80 ms) with selective extraction of T2 water signal (wT2); B, STIR images (TE = 60 ms).

下载 (118KB)

版权所有 © Eco-Vector, 2025

许可 URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».