一种新的个体化统计处理方法在评估康复疗效中的应用:以偏瘫型脑瘫儿童为例
- 作者: Vedernikov I.O.1, Laisheva O.A.1,2, Polyaev B.A.2, Kovalchuk T.S.2, Chindilov D.V.3
-
隶属关系:
- Russian Children's Clinical Hospital — Branch of the Pirogov Russian National Research Medical University
- Pirogov Russian National Research Medical University
- Neurosoft
- 期: 卷 24, 编号 5 (2025)
- 页面: 357-370
- 栏目: Original studies
- URL: https://journals.rcsi.science/1681-3456/article/view/354743
- DOI: https://doi.org/10.17816/rjpbr679655
- EDN: https://elibrary.ru/vmhqpb
- ID: 354743
如何引用文章
详细
论证:步态障碍是导致脑瘫儿童残疾的主要因素。传统评分量表和群体统计检验方法往往难以检测康复后虽幅度较小但具有临床意义的改善。因此需要寻找新的客观评估康复疗效的方法。
目的:比较基于效应量的个体化统计决策方法(magnitude-based decision, MBD)与传统群体统计方法(p值)在基于惯性传感器(instrumental analysis of inertial sensors, IAIS)的步态分析中的应用效果,以评估其在偏瘫型脑瘫儿童康复疗效评估中的价值。
材料与方法。本研究为观察性、单中心、前瞻性、全样本研究。它基于对在Russian Children’s Clinical Hospital儿童康复科进行的IAIS步态分析的记录进行分析,这些分析在8–17岁偏瘫型脑瘫患儿康复前后完成。
结果:在23名偏瘫型脑瘫患儿中,传统的配对t检验未发现步态时空参数的群体水平显著性变化(所有指标p均大于0.05)。然而,MBD个体化分析显示多数患者存在临床意义上的改善:患侧步速与步长增加(分别为47%和33%的患者),膝关节与踝关节活动度增大(分别为67%和40%的患者),足部抬高高度增加(47%),以及腰骶部病理性代偿运动减少(53%)。因此,MBD方法在康复的个体效果方面表现出更高的敏感性,能够发现传统群体方法未能发现的改善。
关键词
作者简介
Igor O. Vedernikov
Russian Children's Clinical Hospital — Branch of the Pirogov Russian National Research Medical University
编辑信件的主要联系方式.
Email: pulmar@bk.ru
ORCID iD: 0009-0006-1327-2525
SPIN 代码: 5047-2594
俄罗斯联邦, Moscow
Olga A. Laisheva
Russian Children's Clinical Hospital — Branch of the Pirogov Russian National Research Medical University; Pirogov Russian National Research Medical University
Email: olgalaisheva@mail.ru
ORCID iD: 0000-0002-8084-1277
SPIN 代码: 8188-2819
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Moscow; MoscowBoris A. Polyaev
Pirogov Russian National Research Medical University
Email: rasmirbi@gmail.com
ORCID iD: 0000-0002-9648-2336
SPIN 代码: 1990-4635
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowTimofey S. Kovalchuk
Pirogov Russian National Research Medical University
Email: doctor@tim-kovalchuk.ru
ORCID iD: 0000-0002-9870-4596
俄罗斯联邦, Moscow
Denis V. Chindilov
Neurosoft
Email: chindilov@neurosoft.com
SPIN 代码: 9390-7483
俄罗斯联邦, Ivanovo
参考
- Akhmatkhanova НН, Badalyan OL, Bril AG, et al. Physical and rehabilitation medicine for cerebral palsy in children: National guidelines. Part 1. Moscow; 2021. (In Russ).
- Carcreff L, Gerber CN, Paraschiv-Ionescu A. Comparison of gait characteristics between clinical and daily life settings in children with cerebral palsy. Scientific reports. 2020;1(10):2091. doi: 10.1038/s41598-020-59002-6
- DeMauro SB, McDonald SA, Heyne RJ, et al. Increasing prevalence of cerebral palsy among two-year-old children born at< 27 weeks of gestation: a cohort study. The Journal of Pediatrics. 2024;(268):113944. doi: 10.1016/j.jpeds.2024.113944
- Novikov VА, Umnov VV, Zharkov DS, et al. The effect of secondary orthopedic complications on the quality of life of children with cerebral palsy. Traumatology and Orthopedics of Russia. 2025; 31(2). doi: 10.17816/2311-2905-17653
- Naaz F, Nayak BP, Panigrahi S, et al. Psychosocial and economic burden on families of children with cerebral palsy: a correlation with locomotor severity. Cureus. 2025;17(1). doi: 10.7759/cureus.76794
- Fong MM, Gibson N, Williams SA, et al. Clinical functional outcome measures for children with cerebral palsy after gait corrective orthopaedic surgery: A scoping review. Developmental Medicine & Child Neurology. 2023;12(65):1573–1586. doi: 10.1111/dmcn.156222023
- Schwartz MH, Aldahondo N, MacWilliams BA. A Patient-Reported Measure of Locomotor Function Derived from the Functional Assessment Questionnaire. 2021. doi: 10.1101/2021.06.12.21258826
- Brodke DJ, Makaroff K, Kelly EG, et al. Slow-motion smartphone video improves interobserver reliability of gait assessment in ambulatory cerebral palsy. Journal of Children's Orthopaedics. 2023;17(4):376–381. doi: 10.1177/18632521231177273
- Choo CZY, Chow JY, Komar J. Validation of the Perception Neuron system for full-body motion capture. PloS one. 2022;1(17):e0262730. doi: 10.1371/journal.pone.0262730
- Jocham AJ, Laidig D, Guggenberger B, et al. Measuring highly accurate foot position and angle trajectories with foot-mounted IMUs in clinical practice. Gait & Posture. 2024;(108):63–69. doi: 10.1016/j.gaitpost.2023.11.002
- Manupibul U, Tanthuwapathom R, Jarumethitanont W, et al. Integration of force and IMU sensors for developing low-cost portable gait measurement system in lower extremities. Scientific Reports. 2023;1(13):10653. doi: 10.1038/s41598-023-37761-2
- Prisco G, Pirozzi M A, Santone A, et al. Validity of Wearable Inertial Sensors for Gait Analysis: A Systematic Review. Diagnostics (Basel, Switzerland). 2024;1(15). doi: 10.3390/diagnostics15010036
- Matkivsky RA, Shapkina OA, Usanova EP, et al. Evaluation of the effectiveness of medical rehabilitation of children with chronic diseases of the digestive system. Medical Almanac. 2012;(2):193–195. EDN: OXQLFZ
- Nosovsky AM, Pikhlak AE, Logachev V. Statistics of small samples in medical research. Russian Medical Journal. 2013;(6):57–60. EDN: RWILYR
- Hopkins WG. Magnitude-Based decisions as hypothesis tests. Sportscience. 2020;(24):1–16.
- De la Torre J, Marin J, Polo M, et al. MCQ-Balance: a method to monitor patients with balance disorders and improve clinical interpretation of posturography. PeerJ. 2021;(9):e10916. doi: 10.7717/peerj.10916
- Marin J, Marin JJ, Blanco T, et al. Is my patient improving? Individualized gait analysis in rehabilitation. Applied Sciences. 2020;23(10):8558. doi: 10.3390/app10238558
- Picelli A, Lobba D, Midiri A, et al. Botulinum toxin injection into the forearm muscles for wrist and fingers spastic overactivity in adults with chronic stroke: a randomized controlled trial comparing three injection techniques. Clinical rehabilitation. 2014;3(28):232–242. doi: 10.1177/0269215513497735
- Raciti L, Raciti G, A Ammendoliaet A, al. Improving spasticity by using botulin toxin: an overview focusing on combined approaches. Brain Sciences. 2024;7(14):631. doi: 10.3390/brainsci14070631
- Synnot A, Chau M, Pitt V, et al. Interventions for managing skeletal muscle spasticity following traumatic brain injury. Cochrane Database of Systematic Reviews. 2017;(11). doi: 10.1002/14651858.CD008929.pub2
补充文件



